
epysurv

Rüdiger Busche and Justin Shenk

Feb 03, 2020

CONTENTS

1 Quickstart 3
1.1 Installation . 3
1.2 Demo . 3

2 Outbreak Detection 5
2.1 Time Point Classification . 5
2.2 Time Series Classification . 5
2.3 Models . 5

3 User Guide 7
3.1 Data Format . 7
3.2 Fitting . 7
3.3 Prediction . 7
3.4 Using Time Series Classification Models . 8

4 epysurv 9
4.1 epysurv package . 9

5 Indices and tables 39

Bibliography 41

Python Module Index 43

Index 45

i

ii

epysurv

epysurv is a pythonic wrapper around the R surveillance package. It’s main goal is to predict disease outbreaks, right
now focusing on univariate count time series. epsurv operates on pandas DataFrames and strives to implement a
scikit-learn like API.

epysurv supports two problem formalizations of outbreak detection: time point classification and time series classi-
fication.

This documentation mainly explains the usage of epysurv and the ideas behind the problem formalizations. For
more details about the algorithms have a look at the vignette of the R surveillance package or the literature references
in the model docstrings.

This package was originally developed at the Robert Koch Institute in the Signale Project .

CONTENTS 1

https://cran.r-project.org/web/packages/surveillance/index.html
https://scikit-learn.org/stable/
https://cran.r-project.org/web/packages/surveillance/surveillance.pdf
https://rki.de/signale-project

epysurv

2 CONTENTS

CHAPTER

ONE

QUICKSTART

1.1 Installation

epysurv should be installed through conda

conda create -n epysurv
conda activate epysurv
conda install -c conda-forge epysurv

1.2 Demo

A quick tour to using epysurv.

3

https://docs.conda.io/en/latest/

epysurv

4 Chapter 1. Quickstart

CHAPTER

TWO

OUTBREAK DETECTION

Surveillance algorithms usually work on regular spaced aggregated time series of case counts. Let x = (𝑥1, . . . 𝑥𝑇)
be such a time series with entries at regularly spaced, discrete timepoints 𝑡. An entry 𝑥𝑡 of that time series is defined
as the number of observed case counts in that time period.

2.1 Time Point Classification

Based on this we can view the problem as a sequential supervised learning problem [Die02], in which the sequence
of counts is paired with a sequence of outbreak labels (x,y), with x = (𝑥1, . . . , 𝑥𝑇), 𝑥𝑖 ∈ N0 and 𝑦𝑖 ∈ B. For each
timepoint 𝑡 a boolean label is assigned, corresponding to whether there were outbreak cases present in the aggregation
time interval. We call this problem time point classification. This is the standard formulation of common surveillance
algorithms.

2.2 Time Series Classification

The time point formulation can be extended into a time series formulation by dividing the time series x into smaller
time series and assigning the label of the last time point to the whole time series. Thus a data set {(x𝑗 , 𝑦𝑗)}𝑇𝑗=1 is
obtained. This formulation is especially useful for incorporating reporting delay. That means that the information at
time point 𝑡 = 𝑗 can be quite different depending on whether 𝑗 is relatively recent, e.g. 𝑗 = 𝑇 or already some time
in the past. This is due to the fact that information arrives sometimes slowly in epidemiological surveillance systems.
We call this problem formulation time series classification.

2.3 Models

As of now all models included in epysurv work on univariate time series of counts. Extensions to multivariate
time series and incorporation of spatial data exist in the R surveillance package, but their inclusion is only
planned for later releases.

The currently included models can be viewed as semi-supervised techniques from a machine learning or anomaly
detection perspective [CBK09]. All models fit historic data, assuming that they represent the normal state of the
system. Having fitted the data, an estimate for the case counts of the current week is computed. This estimate is
compared to the number of cases reported in the current If the observed case count exceeds the expected number by
some threshold, an alarm is raised. Most models in fact compute a predictive distribution for the estimated number of
case counts and raise an alarm if the actual number exceeds a certain quantile of this distribution.

5

epysurv

2.3.1 Window-based Approaches

The simplest form of outbreak detection algorithms are window-based approaches. For them the expectation for the
current week is computed from a moving window of fixed size. For example the EarsC1 algorithm, computes its
predictive distribution based the mean and standard deviation of the last seven timepoints, using a normal distribution.

Because of the short time interval considered, these approaches are naturally insensitive against seasonality and trend.
However, recent outbreaks can contaminate the data, reducing the sensitivity of the algorithms.

This category includes the Ears-family [HTST03], CDC [SWHK89] and the RKI [SSHohle16] algorithm.

2.3.2 GLM-based Approaches

Approaches based on Generalized Linear Models (GLMs) form a popular group of outbreak detection algorithms.
They compute a predictive distribution for the current week based on fitting a GLM to previous data. An alarm is
raised if the current observation is unlikely under the predictive distribution controlled by some $alpha$ value. Often
Poisson or Negative Binomial models are used to do justice to the count nature of the data. Moreover, terms to
accommodate seasonality and trend are often incorporated as well. GLM-based approaches included the classical
Farrington algorithm [FABC96] and its more recent extension [NEF+13].

2.3.3 Cusum-based Approaches

Both window-based and GLM approaches have the downside that they only incorporate evidence from the current
week. Larger outbreaks that build up slowly could therefore easily be missed. Cusum-based approaches are inspired
by models from statistical process control~cite{Oakland2007} and incorporate evidence from previous timepoints.
Instead of computing a predictive distribution, evidence that observed case counts do originate from an epidemic is
accumulated until a certain threshold is exceeded and an alarm is raised. Then the sum is reset.

Cusum-based approaches include the Cusum [RLM99], generalized likelihood ratio methods based on
Poisson:cite:Hohle2006 or negative binomial distributions~cite{Hohle2008} and the OutbreakP method
[FrisenASchioler09].

6 Chapter 2. Outbreak Detection

CHAPTER

THREE

USER GUIDE

Using epysurv models should be straightforward if you are familiar with scikit-learn and pandas.

3.1 Data Format

Let’s first consider the models in the epysurv.models.timepoint package. Each model has a fit and a predict
method that takes a pandas.DataFrame representing an epidemiological count time series of the following form:

n_cases n_outbreak_cases
2004-01-05 0 0
2004-01-12 0 0
2004-01-19 2 0
2004-01-26 2 0
2004-02-02 1 0

The data frame needs to have a regular DatetimeIndex and two columns containing case counts. n_cases
represents the total number of cases observed and n_outbreak_cases the number of cases are labeled as belonging
to an outbreak. Therefore n_cases should always be bigger or equal to n_outbreak_cases as there can not be
more outbreak cases as cases in total. Note also that each row represents the number of cases observed in the period
between the row’s timepoint and the next timepoint. So in the above example the first row denotes that there were zero
cases observed from 2004-01-05 up to 2004-01-11 inclusive.

3.2 Fitting

When passing the data frame to fit the outbreak cases are subtracted from the total cases to obtain the in control time
series, i.e. the time series without outbreaks.

If you do not have any labeled outbreak data, but just the raw counts, the n_cases column will be taken as is under
the assumption that your data is in fact in control data. A warning is still issued in this case.

3.3 Prediction

At prediction time only the total case counts are required. The data frame passed to predict needs to consist of
observations that are spaced at the same regular time intervals as the training data. All data points should lie strictly
in the future of the training data. The data frame returned is the original data augmented by an alarm column that
indicated whether the model predicts an outbreak at that time point or not.

7

epysurv

n_cases alarm
2011-01-03 1 0.0
2011-01-10 0 0.0
2011-01-17 3 0.0
2011-01-24 3 0.0
2011-01-31 3 0.0

3.4 Using Time Series Classification Models

For each each model in the epysurv.models.timepoint package there is a corresponding model in the epy-
surv.models.timeseries package. These models basically perform the same task, but make a binary prediction (alarm
/ no alarm) for an entire time series instead of just a single time point. See Time Series Classification for a more
detailed discussion. Therefore, bot fit and predict take iterables of data frames described above and labels:
Iterable[Tuple[DataFrame, bool]]. The label indicates whether the last time point of the time series is
to be considered an outbreak. The predict method in this case only returns a time series of alarms.

8 Chapter 3. User Guide

CHAPTER

FOUR

EPYSURV

4.1 epysurv package

4.1.1 Subpackages

epysurv.data package

Submodules

epysurv.data.disease_loader module

epysurv.data.disease_loader.load_diseases(path)

epysurv.data.filter_combination module

class epysurv.data.filter_combination.FilterCombination(disease: str, county: str,
pathogen: str, data: pan-
das.core.frame.DataFrame)

Bases: object

Representation of case records filtered by combination of county and pathogen.

disease
The disease from which the cases suffer.

county
The county in which the cases where reported.

pathogen
The pathogen subtype.

data
The case records.

expanding_windows(min_len_in_weeks: int, split_years: epy-
surv.data.filter_combination.SplitYears) → epy-
surv.data.filter_combination.TimeseriesClassificationData

Transform case records into expanding time series.

Parameters

• min_len_in_weeks – The minimum length of each time series.

• split_years – The years at which to split the data into train and test data.

9

epysurv

Returns Compound object of train and test data as generators and dataframes.

class epysurv.data.filter_combination.SplitYears(start: pan-
das._libs.tslibs.timestamps.Timestamp,
middle: pan-
das._libs.tslibs.timestamps.Timestamp,
end: pan-
das._libs.tslibs.timestamps.Timestamp)

Bases: object

Data structure that holds the years data should be split into training and test set.

start to middle is the training data. middle to end is the test data.

classmethod from_ts_input(start, middle, end)
Create instance from inputs that are passed through pd.Timestamp.

class epysurv.data.filter_combination.TimeseriesClassificationData(train_final,
test_final,
train_gen,
test_gen)

Bases: tuple

property test_final
Alias for field number 1

property test_gen
Alias for field number 3

property train_final
Alias for field number 0

property train_gen
Alias for field number 2

epysurv.data.salmonella_data module

class epysurv.data.salmonella_data.TimeseriesClassificationData(train, test,
train_gen,
test_gen)

Bases: tuple

property test
Alias for field number 1

property test_gen
Alias for field number 3

property train
Alias for field number 0

property train_gen
Alias for field number 2

epysurv.data.salmonella_data.salmonella()
Count data from Salmonella newport in Germany.

10 Chapter 4. epysurv

epysurv

epysurv.data.salmonella_data.timeseries_classifaction_generator(train: pan-
das.core.frame.DataFrame,
test: pan-
das.core.frame.DataFrame,
off-
set_in_weeks:
int) → Tu-
ple[Generator,
Generator]

Turn a time point classification problem into a time series classification problem.

epysurv.data.salmonella_data.timeseries_classifcation(train: pan-
das.core.frame.DataFrame,
test: pan-
das.core.frame.DataFrame,
offset_in_weeks: int) → epy-
surv.data.salmonella_data.TimeseriesClassificationData

Convert standard timeseries for usage in time series classification.

epysurv.data.utils module

epysurv.data.utils.timedelta_weeks(weeks: int)

Module contents

Module for handling data transformation and example data.

epysurv.data.load_diseases(path)

class epysurv.data.TimeseriesClassificationData(train, test, train_gen, test_gen)
Bases: tuple

property test
Alias for field number 1

property test_gen
Alias for field number 3

property train
Alias for field number 0

property train_gen
Alias for field number 2

epysurv.data.salmonella()
Count data from Salmonella newport in Germany.

epysurv.data.timeseries_classifaction_generator(train: pandas.core.frame.DataFrame,
test: pandas.core.frame.DataFrame,
offset_in_weeks: int) → Tu-
ple[Generator, Generator]

Turn a time point classification problem into a time series classification problem.

epysurv.data.timeseries_classifcation(train: pandas.core.frame.DataFrame,
test: pandas.core.frame.DataFrame,
offset_in_weeks: int) → epy-
surv.data.salmonella_data.TimeseriesClassificationData

Convert standard timeseries for usage in time series classification.

4.1. epysurv package 11

epysurv

epysurv.metrics package

Submodules

epysurv.metrics.outbreak_detection module

epysurv.metrics.outbreak_detection.ghozzi_case_score(prediction_result: pan-
das.core.frame.DataFrame) →
float

Evalutes the performance of an outbreak detection.

Using the following formula: sum(p[t] * c[t] - (1 - p[t]) * c[t] - (p[t] != o[t]) * e[t] for t in timeseries) / sum(c) p:
alarm c: count of outbreak cases o: outbreak e: endemic cases

Parameters prediction_result – Dataframe containing the columns “alarm”, “outbreak” and
“outbreak_cases”

Returns A maximum score of 1.

epysurv.metrics.outbreak_detection.ghozzi_score(prediction_result: pan-
das.core.frame.DataFrame) →
float

Evalutes the performance of an outbreak detection.

Using the following formula: sum(p[t] * c[t] - (1 - p[t]) * c[t] - (p[t] != o[t]) * mean(c) for t in timeseries) /
sum(c) p: alarm c: count of outbreak cases o: outbreak

Parameters prediction_result – Dataframe containing the columns “alarm”, “outbreak” and
“outbreak_cases”

Returns A maximum score of 1.

Module contents

epysurv.metrics.ghozzi_score(prediction_result: pandas.core.frame.DataFrame)→ float
Evalutes the performance of an outbreak detection.

Using the following formula: sum(p[t] * c[t] - (1 - p[t]) * c[t] - (p[t] != o[t]) * mean(c) for t in timeseries) /
sum(c) p: alarm c: count of outbreak cases o: outbreak

Parameters prediction_result – Dataframe containing the columns “alarm”, “outbreak” and
“outbreak_cases”

Returns A maximum score of 1.

epysurv.models package

Subpackages

epysurv.models.timepoint package

Submodules

12 Chapter 4. epysurv

epysurv

epysurv.models.timepoint.bayes module

class epysurv.models.timepoint.bayes.Bayes(years_back: int = 0, window_half_width: int
= 6, include_recent_year: bool = True, alpha:
float = 0.05)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Evaluation of timepoints with the Bayes subsystem.

years_back
How many years back in time to include when forming the base counts.

window_half_width
Number of weeks to include before and after the current week in each year.

include_recent_year
is a boolean to decide if the year of timePoint also contributes w reference values.

alpha
The parameter alpha is the (1)-quantile to use in order to calculate the upper threshold. As default b, w,
actY are set for the Bayes 1 system with alpha=0.05.

References

epysurv.models.timepoint.boda module

class epysurv.models.timepoint.boda.Boda(trend: bool = False, season: bool = False, prior:
str = ’iid’, alpha: float = 0.05, mc_munu: int
= 100, mc_y: int = 10, quantile_method: str =
’MM’)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The Boda model.

trend
Boolean indicating whether a linear trend term should be included in the model for the expectation the
log-scale

season
Boolean to indicate whether a cyclic spline should be included.

prior
Either of “iid”, “rw1” or “rw2”.

alpha
The threshold for declaring an observed count as an aberration is the (1) · 100% quantile of the predictive
posterior.

mc_munu

mc_y
Number of samples of y to generate for each pair of the mean and size parameter. A total of mc.munu ×
mc.y samples are generated.

sampling_method
Should one sample from the parameters joint distribution (joint) or from their respective marginal posterior
distribution (marginals)

quantile_method
Either of “MC” or “MM”. Indicates how to compute the quantile based on the posterior distribution (no

4.1. epysurv package 13

epysurv

matter the inference method): either by sampling mc.munu values from the posterior distribution of the
parameters and then for each sampled parameters vector sampling mc.y response values so that one gets a
vector of response values based on which one computes an empirical quantile (MC method, as explained
in Manitz and Höhle 2013); or by sampling mc_munu from the posterior distribution of the parameters
and then compute the quantile of the mixture distribution using bisectioning, which is faster.

epysurv.models.timepoint.cdc module

class epysurv.models.timepoint.cdc.CDC(years_back: int = 5, window_half_width: int = 1,
alpha: float = 0.001)

Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

The CDC model.

years_back
How many years back in time to include when forming the base counts.

window_half_width
Number of weeks to include before and after the current week in each year.

alpha
An approximate (two-sided)(1) prediction interval is calculated.

References

epysurv.models.timepoint.cusum module

class epysurv.models.timepoint.cusum.Cusum(reference_value: float = 1.04, de-
cision_boundary: float = 2.26, ex-
pected_numbers_method: str = ’mean’,
transform: str = ’standard’, negbin_alpha:
float = 0.1)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The Cusum model.

reference_value

decision_boundary

expected_numbers_method
How to determine the expected number of cases – the following arguments are possible: {“glm”, “mean”}.

mean Use the mean of all data points passed to fit.

glm Fit a glm to the data ponts passed to fit.

transform
One of the following transformations (warning: Anscombe and NegBin transformations are experimental)
- standard standardized variables z1 (based on asymptotic normality) - This is the default. - rossi stan-
dardized variables z3 as proposed by Rossi - anscombe anscombe residuals – experimental - anscombe2nd
anscombe residuals as in Pierce and Schafer (1986) based on 2nd order approximation of E(X) – ex-
perimental - pearsonNegBin compute Pearson residuals for NegBin – experimental - anscombeNegBin
anscombe residuals for NegBin – experimental - "none" no transformation

negbin_alpha
Parameter of the negative binomial distribution, such that the variance is 𝑚+ ·𝑚2.

14 Chapter 4. epysurv

epysurv

References

epysurv.models.timepoint.ears module

class epysurv.models.timepoint.ears.EarsC1(alpha: float = 0.001, baseline: int = 7,
min_sigma: float = 0)

Bases: epysurv.models.timepoint.ears._EarsBase

Computes a threshold for the number of counts based on values from the recent past.

This is then compared to the observed number of counts. If the observation is above a specific quantile of the
prediction interval, then an alarm is raised. This method is especially useful for data without many historic
values, since it only needs counts from the recent past.

alpha
An approximate (two-sided)(1) prediction interval is calculated.

baseline
How many time points to use for calculating the baseline.

min_sigma
If minSigma is higher than 0, the quantity zAlpha * minSigma is then the alerting threshold if the baseline
is zero.

References

class epysurv.models.timepoint.ears.EarsC2(alpha: float = 0.001, baseline: int = 7,
min_sigma: float = 0)

Bases: epysurv.models.timepoint.ears._EarsBase

Computes a threshold for the number of counts based on values from the recent past.

This is then compared to the observed number of counts. If the observation is above a specific quantile of the
prediction interval, then an alarm is raised. This method is especially useful for data without many historic
values, since it only needs counts from the recent past.

alpha
An approximate (two-sided)(1) prediction interval is calculated.

baseline
How many time points to use for calculating the baseline.

min_sigma
If minSigma is higher than 0, zAlpha * minSigma is then the alerting threshold if the baseline is zero.

References

class epysurv.models.timepoint.ears.EarsC3(alpha: float = 0.001, baseline: int = 7,
min_sigma: float = 0)

Bases: epysurv.models.timepoint.ears._EarsBase

The EarsC3 model.

Computes a threshold for the number of counts based on values from the recent past. This is then compared to
the observed number of counts. If the observation is above a specific quantile of the prediction interval, then
an alarm is raised. This method is especially useful for data without many historic values, since it only needs
counts from the recent past.

4.1. epysurv package 15

epysurv

alpha
An approximate (two-sided)(1) prediction interval is calculated.

baseline
How many time points to use for calculating the baseline.

References

epysurv.models.timepoint.farrington module

class epysurv.models.timepoint.farrington.Farrington(years_back: int = 3, win-
dow_half_width: int = 3,
reweight: bool = True, alpha:
float = 0.01, trend: bool =
True, past_period_cutoff: int =
4, min_cases_in_past_periods:
int = 5, power_transform: str =
’2/3’)

Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

The Farrington algorithm.

For each time point uses a GLM to predict the number of counts according to the procedure by Farrington et al.
(1996). This is then compared to the observed number of counts. If the observation is above a specific quantile
of the prediction interval, then an alarm is raised.

years_back
How many years back in time to include when forming the base counts.

window_half_width
Number of weeks to include before and after the current week in each year.

reweight
Boolean specifying whether to perform reweighting step.

alpha
An approximate (two-sided) (1) prediction interval is calculated.

trend
Boolean indicating whether a trend should be included and kept in case the conditions in the Farrington et.
al. paper are met (see the results). If false then no trend is fit.

past_period_cutoff
Periods considered for suppression of low case numbers.

min_cases_in_past_periods
The minimal number of cases in past periods such that an outbreak is considered.

power_transform
Power transformation to apply to the data if the threshold is to be computed with the method described
in Farrington et al. (1996). Use either - “2/3” for skewness correction (Default) - “1/2” for variance
stabilizing transformation - “none” for no transformation.

16 Chapter 4. epysurv

epysurv

References

class epysurv.models.timepoint.farrington.FarringtonFlexible(years_back:
int = 3, win-
dow_half_width:
int = 3, reweight:
bool = True,
weights_threshold:
float = 2.58, al-
pha: float = 0.01,
trend: bool = True,
trend_threshold:
float = 0.05,
past_period_cutoff:
int = 4,
min_cases_in_past_periods:
int = 5,
power_transform:
str = ’2/3’,
past_weeks_not_included:
int = 26, thresh-
old_method: str =
’delta’)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The extended Farrington algorithm.

For each time point uses a Poisson GLM with overdispersion to predict an upper bound on the number of counts
according to the procedure by Farrington et al. (1996) and by Noufaily et al. (2012). This bound is then
compared to the observed number of counts. If the observation is above the bound, then an alarm is raised.

years_back
How many years back in time to include when forming the base counts.

window_half_width
Number of weeks to include before and after the current week in each year.

reweight
Boolean specifying whether to perform reweighting step.

weights_threshold
Defines the threshold for reweighting past outbreaks using the Anscombe residuals (1 in the original
method, 2.58 advised in the improved method).

alpha
An approximate (one-sided) (1) · 100% prediction interval is calculated unlike the original method where
it was a two-sided interval. The upper limit of this interval i.e. the (1) · 100% quantile serves as an
upperbound.

trend
Boolean indicating whether a trend should be included and kept in case the conditions in the Farrington et.
al. paper are met (see the results). If false then NO trend is fit.

trend_threshold
Threshold for deciding whether to keep trend in the model (0.05 in the original method, 1 advised in the
improved method).

past_period_cutoff
Periods considered for suppression of low case numbers.

4.1. epysurv package 17

epysurv

min_cases_in_past_periods
The minimal number of cases in past periods such that an outbreak is considered. power_transform Power
transformation to apply to the data if the threshold is to be computed with the method described in Far-
rington et al. (1996). Use either - “2/3” for skewness correction (Default) - “1/2” for variance stabilizing
transformation - “none” for no transformation.

past_weeks_not_included
Number of past weeks to ignore in the calculation.

threshold_method
Method to be used to derive the upperbound. Options are - “delta” for the method described in Farrington
et al. (1996) - “Noufaily” for the method described in Noufaily et al. (2012) - “muan” for the method
extended from Noufaily et al. (2012)

References

epysurv.models.timepoint.glr module

Count data regression charts for the monitoring of surveillance time series.

Method as proposed by Höhle and Paul (2008). The implementation is described in Salmon et al. (2016).

class epysurv.models.timepoint.glr.GLRNegativeBinomial(alpha: float = 0,
glr_test_threshold: int
= 5, m: int = -1, change:
str = ’intercept’, direction:
Union[Tuple[str, str], Tu-
ple[str]] = (’inc’, ’dec’),
upperbound_statistic: str
= ’cases’, x_max: float =
10000.0)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Generalized likelihood ratio algorithm using negative binomial distribution.

alpha
The (known) dispersion parameter of the negative binomial distribution, i.e. the parametrization of the
negative binomial is such that the variance is mean + alpha mean2. Note: This parametrization is the
inverse of the shape parametrization used in R – for example in dnbinom and glr.nb. Hence, if alpha=0
then the negative binomial distribution boils down to the Poisson distribution and a call of algo.glrnb is
equivalent to a call to algo.glrpois. If alpha=NULL the parameter is calculated as part of the in-control
estimation. However, the parameter is estimated only once from the first fit. Subsequent fittings are only
for the parameters of the linear predictor with alpha fixed.

glr_test_threshold
Threshold in the GLR test, i.e. c.

m
Number of time instances back in time in the window-limited approach, i.e. the last value considered is
max(1, n m). To always look back until the first observation use -1.

change
A string specifying the type of the alternative. The two choices are “intercept” and “epi”.

direction
Specifying the direction of testing in GLR scheme. - (“inc”,) only increases in x are considered in the
GLR-statistic - (“dec”,) only decreases are regarded - (“inc”, “dec”) both increases and decreases are
regarded.

18 Chapter 4. epysurv

epysurv

upperbound_statistic
A string specifying the type of upperbound-statistic that is returned. - “cases” for the number of cases that
would have been necessary to produce an alarm - “value” for the GLR-statistic

x_max
Maximum value to try for x to see if this is the upperbound number of cases before sounding an alarm
(Default: 1e4). This only applies only when upperbound_statistic == "cases".

References

class epysurv.models.timepoint.glr.GLRPoisson(glr_test_threshold: int = 5, m: int =
-1, change: str = ’intercept’, direc-
tion: Union[Tuple[str, str], Tuple[str]] =
(’inc’, ’dec’), upperbound_statistic: str =
’cases’)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Generalized likelihood ratio algorithm using Poisson distribution.

glr_test_threshold
Threshold in the GLR test, i.e. c.

m
Number of time instances back in time in the window-limited approach, i.e. the last value considered is
max(1, n m). To always look back until the first observation use -1.

change
A string specifying the type of the alternative. The two choices are “intercept” and “epi”.

direction
Specifying the direction of testing in GLR scheme. - (“inc”,) only increases in x are considered in the
GLR-statistic - (“dec”,) only decreases are regarded - (“inc”, “dec”) both increases and decreases are
regarded.

upperbound_statistic
a string specifying the type of upperbound-statistic that is returned. With “cases” the number of cases that
would have been necessary to produce an alarm or with “value” the GLR-statistic is computed.

References

change = 'intercept'
a string specifying the type of the alternative. Currently the two choices are intercept and epi. See the SFB
Discussion Paper 500 for details

direction = ('inc', 'dec')
Specifying the direction of testing in GLR scheme. With “inc” only increases in x are considered in the
GLR-statistic, with “dec” decreases are regarded.

glr_test_threshold = 5
threshold in the GLR test, i.e. c.

m = -1
number of time instances back in time in the window-limited approach, i.e. the last value considered is
max 1, n M. To always look back until the first observation use M=-1.

upperbound_statistic = 'cases'
a string specifying the type of upperbound-statistic that is returned. With “cases” the number of cases that
would have been necessary to produce an alarm or with “value” the GLR-statistic is computed (see below)

4.1. epysurv package 19

epysurv

epysurv.models.timepoint.hmm module

class epysurv.models.timepoint.hmm.HMM(n_observations: int = -1, n_hidden_states: int =
2, trend: bool = True, n_harmonics: int = 1,
equal_covariate_effects: bool = False)

Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

Hidden Markov model for outbreak detection.

n_observations
number of observations back in time to use for fitting the HMM (including the current observation). Rea-
sonable values are a multiple of observations per year, the default is -1, which means to use all possible
values - for long series this might take very long time!

n_hidden_states
number of hidden states in the HMM – the typical choice is 2. The initial rates are set such that the
noStates’th state is the one having the highest rate. In other words: this state is considered the outbreak
state.

trend
The two choices are “intercept” and “epi”.

n_harmonics
Number of harmonic waves to include in the linear predictor.

equal_covariate_effects
If set then all covariate effects parameters are equal for the states.

References

epysurv.models.timepoint.outbreak_p module

class epysurv.models.timepoint.outbreak_p.OutbreakP(threshold: int = 100, upper-
bound_statistic: str = ’cases’,
max_upperbound_cases: int =
100000)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The OutbreakP model.

threshold
The threshold value. Once the outbreak statistic is above this threshold an alarm is sounded.

upperbound_statistic
A string specifying the type of upperbound-statistic that is returned. With “cases” the number of cases
that would have been necessary to produce an alarm (NNBA) or with “value” the outbreakP-statistic is
computed.

max_upperbound_cases
Upperbound when numerically searching for NNBA. Default is 1e5.

References

20 Chapter 4. epysurv

epysurv

epysurv.models.timepoint.rki module

class epysurv.models.timepoint.rki.RKI(years_back: int = 0, window_half_width: int = 6,
include_recent_year: bool = True)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The old algorithm from the Robert Koch Institute.

years_back
How many years back in time to include when forming the base counts.

window_half_width
Number of weeks to include before and after the current week in each year.

include_recent_year
Is a boolean to decide if the year of timePoint also contributes w reference values.

Module contents

class epysurv.models.timepoint.Bayes(years_back: int = 0, window_half_width: int = 6, in-
clude_recent_year: bool = True, alpha: float = 0.05)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Evaluation of timepoints with the Bayes subsystem.

years_back
How many years back in time to include when forming the base counts.

window_half_width
Number of weeks to include before and after the current week in each year.

include_recent_year
is a boolean to decide if the year of timePoint also contributes w reference values.

alpha
The parameter alpha is the (1)-quantile to use in order to calculate the upper threshold. As default b, w,
actY are set for the Bayes 1 system with alpha=0.05.

References

class epysurv.models.timepoint.Boda(trend: bool = False, season: bool = False, prior: str =
’iid’, alpha: float = 0.05, mc_munu: int = 100, mc_y: int
= 10, quantile_method: str = ’MM’)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The Boda model.

trend
Boolean indicating whether a linear trend term should be included in the model for the expectation the
log-scale

season
Boolean to indicate whether a cyclic spline should be included.

prior
Either of “iid”, “rw1” or “rw2”.

alpha
The threshold for declaring an observed count as an aberration is the (1) · 100% quantile of the predictive
posterior.

4.1. epysurv package 21

epysurv

mc_munu

mc_y
Number of samples of y to generate for each pair of the mean and size parameter. A total of mc.munu ×
mc.y samples are generated.

sampling_method
Should one sample from the parameters joint distribution (joint) or from their respective marginal posterior
distribution (marginals)

quantile_method
Either of “MC” or “MM”. Indicates how to compute the quantile based on the posterior distribution (no
matter the inference method): either by sampling mc.munu values from the posterior distribution of the
parameters and then for each sampled parameters vector sampling mc.y response values so that one gets a
vector of response values based on which one computes an empirical quantile (MC method, as explained
in Manitz and Höhle 2013); or by sampling mc_munu from the posterior distribution of the parameters
and then compute the quantile of the mixture distribution using bisectioning, which is faster.

class epysurv.models.timepoint.CDC(years_back: int = 5, window_half_width: int = 1, alpha:
float = 0.001)

Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

The CDC model.

years_back
How many years back in time to include when forming the base counts.

window_half_width
Number of weeks to include before and after the current week in each year.

alpha
An approximate (two-sided)(1) prediction interval is calculated.

References

class epysurv.models.timepoint.Cusum(reference_value: float = 1.04, decision_boundary: float
= 2.26, expected_numbers_method: str = ’mean’,
transform: str = ’standard’, negbin_alpha: float = 0.1)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The Cusum model.

reference_value

decision_boundary

expected_numbers_method
How to determine the expected number of cases – the following arguments are possible: {“glm”, “mean”}.

mean Use the mean of all data points passed to fit.

glm Fit a glm to the data ponts passed to fit.

transform
One of the following transformations (warning: Anscombe and NegBin transformations are experimental)
- standard standardized variables z1 (based on asymptotic normality) - This is the default. - rossi stan-
dardized variables z3 as proposed by Rossi - anscombe anscombe residuals – experimental - anscombe2nd
anscombe residuals as in Pierce and Schafer (1986) based on 2nd order approximation of E(X) – ex-
perimental - pearsonNegBin compute Pearson residuals for NegBin – experimental - anscombeNegBin
anscombe residuals for NegBin – experimental - "none" no transformation

22 Chapter 4. epysurv

epysurv

negbin_alpha
Parameter of the negative binomial distribution, such that the variance is 𝑚+ ·𝑚2.

References

class epysurv.models.timepoint.EarsC1(alpha: float = 0.001, baseline: int = 7, min_sigma:
float = 0)

Bases: epysurv.models.timepoint.ears._EarsBase

Computes a threshold for the number of counts based on values from the recent past.

This is then compared to the observed number of counts. If the observation is above a specific quantile of the
prediction interval, then an alarm is raised. This method is especially useful for data without many historic
values, since it only needs counts from the recent past.

alpha
An approximate (two-sided)(1) prediction interval is calculated.

baseline
How many time points to use for calculating the baseline.

min_sigma
If minSigma is higher than 0, the quantity zAlpha * minSigma is then the alerting threshold if the baseline
is zero.

References

class epysurv.models.timepoint.EarsC2(alpha: float = 0.001, baseline: int = 7, min_sigma:
float = 0)

Bases: epysurv.models.timepoint.ears._EarsBase

Computes a threshold for the number of counts based on values from the recent past.

This is then compared to the observed number of counts. If the observation is above a specific quantile of the
prediction interval, then an alarm is raised. This method is especially useful for data without many historic
values, since it only needs counts from the recent past.

alpha
An approximate (two-sided)(1) prediction interval is calculated.

baseline
How many time points to use for calculating the baseline.

min_sigma
If minSigma is higher than 0, zAlpha * minSigma is then the alerting threshold if the baseline is zero.

References

class epysurv.models.timepoint.EarsC3(alpha: float = 0.001, baseline: int = 7, min_sigma:
float = 0)

Bases: epysurv.models.timepoint.ears._EarsBase

The EarsC3 model.

Computes a threshold for the number of counts based on values from the recent past. This is then compared to
the observed number of counts. If the observation is above a specific quantile of the prediction interval, then
an alarm is raised. This method is especially useful for data without many historic values, since it only needs
counts from the recent past.

4.1. epysurv package 23

epysurv

alpha
An approximate (two-sided)(1) prediction interval is calculated.

baseline
How many time points to use for calculating the baseline.

References

class epysurv.models.timepoint.FarringtonFlexible(years_back: int = 3, win-
dow_half_width: int = 3, reweight:
bool = True, weights_threshold:
float = 2.58, alpha: float = 0.01,
trend: bool = True, trend_threshold:
float = 0.05, past_period_cutoff: int
= 4, min_cases_in_past_periods:
int = 5, power_transform: str =
’2/3’, past_weeks_not_included:
int = 26, threshold_method: str =
’delta’)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The extended Farrington algorithm.

For each time point uses a Poisson GLM with overdispersion to predict an upper bound on the number of counts
according to the procedure by Farrington et al. (1996) and by Noufaily et al. (2012). This bound is then
compared to the observed number of counts. If the observation is above the bound, then an alarm is raised.

years_back
How many years back in time to include when forming the base counts.

window_half_width
Number of weeks to include before and after the current week in each year.

reweight
Boolean specifying whether to perform reweighting step.

weights_threshold
Defines the threshold for reweighting past outbreaks using the Anscombe residuals (1 in the original
method, 2.58 advised in the improved method).

alpha
An approximate (one-sided) (1) · 100% prediction interval is calculated unlike the original method where
it was a two-sided interval. The upper limit of this interval i.e. the (1) · 100% quantile serves as an
upperbound.

trend
Boolean indicating whether a trend should be included and kept in case the conditions in the Farrington et.
al. paper are met (see the results). If false then NO trend is fit.

trend_threshold
Threshold for deciding whether to keep trend in the model (0.05 in the original method, 1 advised in the
improved method).

past_period_cutoff
Periods considered for suppression of low case numbers.

min_cases_in_past_periods
The minimal number of cases in past periods such that an outbreak is considered. power_transform Power

24 Chapter 4. epysurv

epysurv

transformation to apply to the data if the threshold is to be computed with the method described in Far-
rington et al. (1996). Use either - “2/3” for skewness correction (Default) - “1/2” for variance stabilizing
transformation - “none” for no transformation.

past_weeks_not_included
Number of past weeks to ignore in the calculation.

threshold_method
Method to be used to derive the upperbound. Options are - “delta” for the method described in Farrington
et al. (1996) - “Noufaily” for the method described in Noufaily et al. (2012) - “muan” for the method
extended from Noufaily et al. (2012)

References

class epysurv.models.timepoint.Farrington(years_back: int = 3, window_half_width: int
= 3, reweight: bool = True, alpha: float =
0.01, trend: bool = True, past_period_cutoff:
int = 4, min_cases_in_past_periods: int = 5,
power_transform: str = ’2/3’)

Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

The Farrington algorithm.

For each time point uses a GLM to predict the number of counts according to the procedure by Farrington et al.
(1996). This is then compared to the observed number of counts. If the observation is above a specific quantile
of the prediction interval, then an alarm is raised.

years_back
How many years back in time to include when forming the base counts.

window_half_width
Number of weeks to include before and after the current week in each year.

reweight
Boolean specifying whether to perform reweighting step.

alpha
An approximate (two-sided) (1) prediction interval is calculated.

trend
Boolean indicating whether a trend should be included and kept in case the conditions in the Farrington et.
al. paper are met (see the results). If false then no trend is fit.

past_period_cutoff
Periods considered for suppression of low case numbers.

min_cases_in_past_periods
The minimal number of cases in past periods such that an outbreak is considered.

power_transform
Power transformation to apply to the data if the threshold is to be computed with the method described
in Farrington et al. (1996). Use either - “2/3” for skewness correction (Default) - “1/2” for variance
stabilizing transformation - “none” for no transformation.

4.1. epysurv package 25

epysurv

References

class epysurv.models.timepoint.GLRNegativeBinomial(alpha: float = 0,
glr_test_threshold: int = 5,
m: int = -1, change: str = ’inter-
cept’, direction: Union[Tuple[str,
str], Tuple[str]] = (’inc’, ’dec’),
upperbound_statistic: str =
’cases’, x_max: float = 10000.0)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Generalized likelihood ratio algorithm using negative binomial distribution.

alpha
The (known) dispersion parameter of the negative binomial distribution, i.e. the parametrization of the
negative binomial is such that the variance is mean + alpha mean2. Note: This parametrization is the
inverse of the shape parametrization used in R – for example in dnbinom and glr.nb. Hence, if alpha=0
then the negative binomial distribution boils down to the Poisson distribution and a call of algo.glrnb is
equivalent to a call to algo.glrpois. If alpha=NULL the parameter is calculated as part of the in-control
estimation. However, the parameter is estimated only once from the first fit. Subsequent fittings are only
for the parameters of the linear predictor with alpha fixed.

glr_test_threshold
Threshold in the GLR test, i.e. c.

m
Number of time instances back in time in the window-limited approach, i.e. the last value considered is
max(1, n m). To always look back until the first observation use -1.

change
A string specifying the type of the alternative. The two choices are “intercept” and “epi”.

direction
Specifying the direction of testing in GLR scheme. - (“inc”,) only increases in x are considered in the
GLR-statistic - (“dec”,) only decreases are regarded - (“inc”, “dec”) both increases and decreases are
regarded.

upperbound_statistic
A string specifying the type of upperbound-statistic that is returned. - “cases” for the number of cases that
would have been necessary to produce an alarm - “value” for the GLR-statistic

x_max
Maximum value to try for x to see if this is the upperbound number of cases before sounding an alarm
(Default: 1e4). This only applies only when upperbound_statistic == "cases".

References

class epysurv.models.timepoint.GLRPoisson(glr_test_threshold: int = 5, m: int = -1, change:
str = ’intercept’, direction: Union[Tuple[str,
str], Tuple[str]] = (’inc’, ’dec’), upper-
bound_statistic: str = ’cases’)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Generalized likelihood ratio algorithm using Poisson distribution.

glr_test_threshold
Threshold in the GLR test, i.e. c.

26 Chapter 4. epysurv

epysurv

m
Number of time instances back in time in the window-limited approach, i.e. the last value considered is
max(1, n m). To always look back until the first observation use -1.

change
A string specifying the type of the alternative. The two choices are “intercept” and “epi”.

direction
Specifying the direction of testing in GLR scheme. - (“inc”,) only increases in x are considered in the
GLR-statistic - (“dec”,) only decreases are regarded - (“inc”, “dec”) both increases and decreases are
regarded.

upperbound_statistic
a string specifying the type of upperbound-statistic that is returned. With “cases” the number of cases that
would have been necessary to produce an alarm or with “value” the GLR-statistic is computed.

References

change = 'intercept'
a string specifying the type of the alternative. Currently the two choices are intercept and epi. See the SFB
Discussion Paper 500 for details

direction = ('inc', 'dec')
Specifying the direction of testing in GLR scheme. With “inc” only increases in x are considered in the
GLR-statistic, with “dec” decreases are regarded.

glr_test_threshold = 5
threshold in the GLR test, i.e. c.

m = -1
number of time instances back in time in the window-limited approach, i.e. the last value considered is
max 1, n M. To always look back until the first observation use M=-1.

upperbound_statistic = 'cases'
a string specifying the type of upperbound-statistic that is returned. With “cases” the number of cases that
would have been necessary to produce an alarm or with “value” the GLR-statistic is computed (see below)

class epysurv.models.timepoint.HMM(n_observations: int = -1, n_hidden_states: int =
2, trend: bool = True, n_harmonics: int = 1,
equal_covariate_effects: bool = False)

Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

Hidden Markov model for outbreak detection.

n_observations
number of observations back in time to use for fitting the HMM (including the current observation). Rea-
sonable values are a multiple of observations per year, the default is -1, which means to use all possible
values - for long series this might take very long time!

n_hidden_states
number of hidden states in the HMM – the typical choice is 2. The initial rates are set such that the
noStates’th state is the one having the highest rate. In other words: this state is considered the outbreak
state.

trend
The two choices are “intercept” and “epi”.

n_harmonics
Number of harmonic waves to include in the linear predictor.

4.1. epysurv package 27

epysurv

equal_covariate_effects
If set then all covariate effects parameters are equal for the states.

References

class epysurv.models.timepoint.OutbreakP(threshold: int = 100, upperbound_statistic: str =
’cases’, max_upperbound_cases: int = 100000)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The OutbreakP model.

threshold
The threshold value. Once the outbreak statistic is above this threshold an alarm is sounded.

upperbound_statistic
A string specifying the type of upperbound-statistic that is returned. With “cases” the number of cases
that would have been necessary to produce an alarm (NNBA) or with “value” the outbreakP-statistic is
computed.

max_upperbound_cases
Upperbound when numerically searching for NNBA. Default is 1e5.

References

class epysurv.models.timepoint.RKI(years_back: int = 0, window_half_width: int = 6, in-
clude_recent_year: bool = True)

Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The old algorithm from the Robert Koch Institute.

years_back
How many years back in time to include when forming the base counts.

window_half_width
Number of weeks to include before and after the current week in each year.

include_recent_year
Is a boolean to decide if the year of timePoint also contributes w reference values.

epysurv.models.timeseries package

Submodules

epysurv.models.timeseries.convert_interface module

Put a timeseries interface in front of all timepoint algorithms.

class epysurv.models.timeseries.convert_interface.Bayes(years_back: int = 0, win-
dow_half_width: int = 6,
include_recent_year: bool
= True, alpha: float =
0.05)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.bayes.Bayes

28 Chapter 4. epysurv

epysurv

class epysurv.models.timeseries.convert_interface.Boda(trend: bool = False, season:
bool = False, prior: str =
’iid’, alpha: float = 0.05,
mc_munu: int = 100, mc_y:
int = 10, quantile_method:
str = ’MM’)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.boda.Boda

class epysurv.models.timeseries.convert_interface.CDC(years_back: int = 5, win-
dow_half_width: int = 1, al-
pha: float = 0.001)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.cdc.CDC

class epysurv.models.timeseries.convert_interface.Cusum(reference_value: float =
1.04, decision_boundary:
float = 2.26, ex-
pected_numbers_method:
str = ’mean’, trans-
form: str = ’standard’,
negbin_alpha: float = 0.1)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.cusum.Cusum

class epysurv.models.timeseries.convert_interface.EarsC1(alpha: float = 0.001,
baseline: int = 7,
min_sigma: float = 0)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.ears.EarsC1

class epysurv.models.timeseries.convert_interface.EarsC2(alpha: float = 0.001,
baseline: int = 7,
min_sigma: float = 0)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.ears.EarsC2

class epysurv.models.timeseries.convert_interface.Farrington(years_back:
int = 3, win-
dow_half_width:
int = 3, reweight:
bool = True, al-
pha: float = 0.01,
trend: bool = True,
past_period_cutoff:
int = 4,
min_cases_in_past_periods:
int = 5,
power_transform:
str = ’2/3’)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.farrington.Farrington

4.1. epysurv package 29

epysurv

class epysurv.models.timeseries.convert_interface.FarringtonFlexible(years_back:
int =
3, win-
dow_half_width:
int = 3,
reweight:
bool =
True,
weights_threshold:
float =
2.58,
alpha:
float =
0.01,
trend:
bool =
True,
trend_threshold:
float =
0.05,
past_period_cutoff:
int = 4,
min_cases_in_past_periods:
int = 5,
power_transform:
str =
’2/3’,
past_weeks_not_included:
int =
26,
thresh-
old_method:
str =
’delta’)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.farrington.FarringtonFlexible

30 Chapter 4. epysurv

epysurv

class epysurv.models.timeseries.convert_interface.GLRNegativeBinomial(alpha:
float
= 0,
glr_test_threshold:
int =
5, m:
int =
-1,
change:
str =
’in-
ter-
cept’,
direc-
tion:
Union[Tuple[str,
str],
Tu-
ple[str]]
=
(’inc’,
’dec’),
up-
per-
bound_statistic:
str =
’cases’,
x_max:
float
=
10000.0)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.glr.GLRNegativeBinomial

class epysurv.models.timeseries.convert_interface.GLRPoisson(glr_test_threshold:
int = 5, m: int = -1,
change: str = ’in-
tercept’, direction:
Union[Tuple[str,
str], Tuple[str]] =
(’inc’, ’dec’), up-
perbound_statistic:
str = ’cases’)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.glr.GLRPoisson

class epysurv.models.timeseries.convert_interface.HMM(n_observations: int = -
1, n_hidden_states: int
= 2, trend: bool = True,
n_harmonics: int = 1,
equal_covariate_effects: bool
= False)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.hmm.HMM

4.1. epysurv package 31

epysurv

class epysurv.models.timeseries.convert_interface.OutbreakP(threshold: int
= 100, upper-
bound_statistic:
str = ’cases’,
max_upperbound_cases:
int = 100000)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.outbreak_p.OutbreakP

class epysurv.models.timeseries.convert_interface.RKI(years_back: int = 0, win-
dow_half_width: int = 6, in-
clude_recent_year: bool =
True)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.rki.RKI

Module contents

class epysurv.models.timeseries.Bayes(years_back: int = 0, window_half_width: int = 6, in-
clude_recent_year: bool = True, alpha: float = 0.05)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.bayes.Bayes

class epysurv.models.timeseries.Boda(trend: bool = False, season: bool = False, prior: str =
’iid’, alpha: float = 0.05, mc_munu: int = 100, mc_y:
int = 10, quantile_method: str = ’MM’)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.boda.Boda

class epysurv.models.timeseries.CDC(years_back: int = 5, window_half_width: int = 1, alpha:
float = 0.001)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.cdc.CDC

class epysurv.models.timeseries.Cusum(reference_value: float = 1.04, decision_boundary:
float = 2.26, expected_numbers_method: str =
’mean’, transform: str = ’standard’, negbin_alpha:
float = 0.1)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.cusum.Cusum

class epysurv.models.timeseries.EarsC1(alpha: float = 0.001, baseline: int = 7, min_sigma:
float = 0)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.ears.EarsC1

class epysurv.models.timeseries.EarsC2(alpha: float = 0.001, baseline: int = 7, min_sigma:
float = 0)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.ears.EarsC2

32 Chapter 4. epysurv

epysurv

class epysurv.models.timeseries.FarringtonFlexible(years_back: int = 3, win-
dow_half_width: int = 3,
reweight: bool = True,
weights_threshold: float = 2.58,
alpha: float = 0.01, trend: bool
= True, trend_threshold: float =
0.05, past_period_cutoff: int =
4, min_cases_in_past_periods:
int = 5, power_transform: str =
’2/3’, past_weeks_not_included:
int = 26, threshold_method: str =
’delta’)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.farrington.FarringtonFlexible

class epysurv.models.timeseries.Farrington(years_back: int = 3, window_half_width: int
= 3, reweight: bool = True, alpha: float =
0.01, trend: bool = True, past_period_cutoff:
int = 4, min_cases_in_past_periods: int = 5,
power_transform: str = ’2/3’)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.farrington.Farrington

class epysurv.models.timeseries.GLRNegativeBinomial(alpha: float = 0,
glr_test_threshold: int =
5, m: int = -1, change:
str = ’intercept’, direction:
Union[Tuple[str, str], Tu-
ple[str]] = (’inc’, ’dec’), upper-
bound_statistic: str = ’cases’,
x_max: float = 10000.0)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.glr.GLRNegativeBinomial

class epysurv.models.timeseries.GLRPoisson(glr_test_threshold: int = 5, m: int = -
1, change: str = ’intercept’, direction:
Union[Tuple[str, str], Tuple[str]] = (’inc’,
’dec’), upperbound_statistic: str = ’cases’)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.glr.GLRPoisson

class epysurv.models.timeseries.HMM(n_observations: int = -1, n_hidden_states: int =
2, trend: bool = True, n_harmonics: int = 1,
equal_covariate_effects: bool = False)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.hmm.HMM

class epysurv.models.timeseries.OutbreakP(threshold: int = 100, upperbound_statistic:
str = ’cases’, max_upperbound_cases: int =
100000)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.outbreak_p.OutbreakP

class epysurv.models.timeseries.RKI(years_back: int = 0, window_half_width: int = 6, in-
clude_recent_year: bool = True)

Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin,
epysurv.models.timepoint.rki.RKI

4.1. epysurv package 33

epysurv

Module contents

epysurv.simulation package

Submodules

epysurv.simulation.naive_poisson module

epysurv.simulation.naive_poisson.get_outbreak_begins(n: int, outbreak_length: int,
n_outbreaks: int)→ Set[int]

epysurv.simulation.naive_poisson.simulate_outbreaks(n: int = 104, outbreak_length:
int = 5, n_outbreaks: int
= 3, mu: float = 1, out-
break_mu: float = 10) →
pandas.core.frame.DataFrame

Simulate outbreaks based on Poisson distribution.

Parameters

• n – Number of weeks.

• outbreak_length – Number of weeks each outbreak is long.

• n_outbreaks – Number of outbreaks.

• mu – Mean for the baseline.

• outbreak_mu – Mean for the outbreaks.

Returns Simulated case counts per week, separated into baseline and outbreak cases.

Module contents

Module for simulating epidemiological data.

class epysurv.simulation.PointSource(alpha: float = 1.0, amplitude: float = 1.0, frequency:
int = 1, p: float = 0.99, r: float = 0.01, seasonal_move:
int = 0, seed: Optional[int] = None, trend: float = 0.0)

Bases: epysurv.simulation.base.BaseSimulation

Simulation of epidemics which were introduced by point sources.

The basis of this programme is a combination of a Hidden Markov Model (to get random time points for out-
breaks) and a simple model (compare epysurv.simulation.SeasonalNoise) to simulate the baseline.

Parameters

• amplitude – Amplitude of the sine. Determines the possible range of simulated seasonal
cases.

• alpha – Parameter to move along the y-axis (negative values are not allowed) with alpha
>= amplitude.

• frequency – Factor in oscillation term. Is multiplied with the annual term 𝜔 and the
current time point.

• p – Probability to get a new outbreak at time 𝑡 if there was one at time 𝑡− 1.

• r – Probability to get no new outbreak at time 𝑡 if there was none at time 𝑡− 1.

34 Chapter 4. epysurv

epysurv

• seasonal_move – A term added to time point 𝑡 to move the curve along the x-axis.

• seed – Seed for the random number generation.

• trend – Controls the influence of the current week on 𝜇.

References

http://surveillance.r-forge.r-project.org/

simulate(length: int, state_weight: float = 0, state: Optional[Sequence[int]] = None) → pan-
das.core.frame.DataFrame

Simulate outbreaks.

Parameters

• length – Number of weeks to model. length is ignored if state is given. In this
case, the length of state is used.

• state – Use a state chain to define the status at this time point (outbreak or not). If not
given, a Markov chain is generated automatically.

• state_weight – Additional weight for an outbreak which influences the distribution
parameter mu.

Returns A DataFrame of simulated case counts per week, separated into baseline and out-
break cases.

class epysurv.simulation.SeasonalNoiseNegativeBinomial(baseline_frequency: float =
1.5, dispersion: float = 1.0,
seasonality_cos: float = 0.2,
seasonality_sin: float = -0.4,
seasonality_length: int = 1,
seed: Optional[int] = None,
trend: float = 0.003)

Bases: epysurv.simulation.base.BaseSimulation

A time series simulation that generates case counts based on a negative binomial model.

The model is described by a mean 𝜇, variance 𝜑 · 𝜇, and a linear predictor including trend and seasonality
determined by Fourier terms. 𝜇 of the model depends on the current week and is defined as follows:

𝜇(𝑡) = exp
{︁
𝜃 + 𝛽𝑡+

∑︀𝑚
𝑗=1

{︀
𝛾1 cos(

2𝜋𝑗𝑡
52) + 𝛾2 sin(

2𝜋𝑗𝑡
52)

}︀}︁
where 𝑡 is the current week, 𝑚 the seasonality length, 𝛽 equals to the trend parameter, 𝛾 is a seasonality param-
eter, and 𝜃 is the baseline frequency of the cases.

The simulation is then run using 𝜇 and the dispersion parameter 𝜑 to specify the negative binomial model we
draw case counts from.

Parameters

• baseline_frequency – Baseline frequency of cases.

• dispersion – Regulates the overdispersion compared to the Poisson distribution (𝜑 · 𝜇).

• seasonality_cos – Seasonality parameter to model cos of the Fourier term.

• seasonality_sin – seasonality parameter to model sin of the Fourier term.

• seasonality_length – Models the annual-wise seasonality. 0 equals to no seasonality,
1 to annual seasonality, 2 to biannual seasonality and so forth.

• seed – A seed for the random number generation.

4.1. epysurv package 35

http://surveillance.r-forge.r-project.org/

epysurv

• trend – Controls the influence of the current week on 𝜇.

References

simulate(length: int)→ pandas.core.frame.DataFrame
Simulate outbreaks.

length Number of weeks to model.

Returns A DataFrame of an endemic time series where each row contains the case counts ot
this week.

class epysurv.simulation.SeasonalNoisePoisson(alpha: float = 1.0, amplitude: float = 1.0,
frequency: int = 1, seasonal_move: int =
0, seed: Optional[int] = None, trend: float
= 0.0)

Bases: epysurv.simulation.base.BaseSimulation

Simulation of an endemic time series based on a Poisson distribution.

The mean of the Poisson distribution is modelled as:

𝜇(𝑡) = exp (𝐴 sin (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 · 𝜔 · (𝑡+ 𝜑)) + 𝛼+ 𝛽 · 𝑡+𝐾 · 𝑠𝑡𝑎𝑡𝑒)

with 𝜔 = 𝜋/52, 𝐴 being the amplitude, 𝛽 the trend parameter, 𝑡 the current week, and 𝜃 the seasonal move.

Parameters

• amplitude – Amplitude of the sine. Determines the range of simulated cases.

• alpha – Parameter to move simulation along the y-axis (negative values are not allowed)
with alpha >= amplitude.

• frequency – Factor in oscillation term. Is multiplied with the annual term 𝜔 and the
current time point.

• seasonal_move – A term added to each time point 𝑡 to move the curve along the x-axis.

• seed – Seed for the random number generation.

• trend – Controls the influence of the current week on 𝜇.

References

http://surveillance.r-forge.r-project.org/

simulate(length: int, state_weight: Optional[float] = None, state: Optional[Sequence[int]] = None)
→ pandas.core.frame.DataFrame

Simulate outbreaks.

Parameters

• length – Number of weeks to model. length is ignored if state is given. In this
case the length of state is used.

• state – Use a state chain to define the status at this time point (outbreak or not). If not
given, a Markov chain is generated automatically.

• state_weight – Additional weight for an outbreak which influences the distribution
parameter 𝜇.

Returns

36 Chapter 4. epysurv

http://surveillance.r-forge.r-project.org/

epysurv

• A DataFrame of an endemic time series where each row contains the case counts of this
week.

• It also contains the mean case count value based on the underlying sinus model.

epysurv.visualization package

Submodules

epysurv.visualization.model_diagnostics module

epysurv.visualization.model_diagnostics.ghozzi_score_plot(prediction_result: pan-
das.core.frame.DataFrame,
filename: str)

Plots case counts and detector predictions with ghozzi weighting.

Parameters

• prediction_result – DataFrame containing ‘alarm’, ‘county’, ‘pathogen’, ‘n_cases’,
‘n_outbreak_cases’, ‘outbreak’.

• filename – File name to write the plot to.

epysurv.visualization.model_diagnostics.plot_confusion_matrix(confusion_matrix:
numpy.ndarray,
class_names:
list, ax: mat-
plotlib.axes._axes.Axes
= None) → mat-
plotlib.axes._axes.Axes

Plots a confusion matrix, as returned by sklearn.metrics.confusion_matrix, as a heatmap.

Based on https://gist.github.com/shaypal5/94c53d765083101efc0240d776a23823

Parameters

• confusion_matrix – The numpy.ndarray object returned from a call to
sklearn.metrics.confusion_matrix. Similarly constructed ndarrays can also be used.

• class_names – An ordered list of class names, in the order they index the given confusion
matrix.

• figsize – A 2-long tuple, the first value determining the horizontal size of the ouputted
figure, the second determining the vertical size. Defaults to (10,7).

Returns The resulting confusion matrix figure

epysurv.visualization.model_diagnostics.plot_prediction(train_data, test_data,
prediction, ax: mat-
plotlib.axes._axes.Axes
= None) → mat-
plotlib.axes._axes.Axes

Plots case counts as step line, with outbreaks and alarms indicated by triangles.

Module contents

Module for visualizing epidemiological data and performance of outbreak detection models.

4.1. epysurv package 37

https://gist.github.com/shaypal5/94c53d765083101efc0240d776a23823

epysurv

4.1.2 Module contents

Surveillance algorithms in Python.

Currently not implemented:

• rogerson as it requires in control values to be specified

38 Chapter 4. epysurv

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

39

epysurv

40 Chapter 5. Indices and tables

BIBLIOGRAPHY

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection. ACM Computing Sur-
veys, 41(3):1–58, jul 2009. URL: http://www.cs.umn.edu/sites/cs.umn.edu/files/tech_reports/07-017.pdf,
doi:10.1145/1541880.1541882.

[Die02] Thomas G Dietterich. Machine Learning for Sequential Data: A Review. In Joint IAPR international
workshops on statistical techniques in pattern recognition (SPR) and structural and syntactic pattern
recognition (SSPR), 15–30. Springer, Berlin, Heidelberg, 2002. URL: http://link.springer.com/10.1007/
3-540-70659-3\T1\textbackslash{}2, arXiv:0-387-31073-8, doi:10.1007/3-540-70659-3_2.

[FABC96] C. P. Farrington, N. J. Andrews, A. D. Beale, and M. A. Catchpole. A Statistical Algorithm for the Early
Detection of Outbreaks of Infectious Disease. Journal of the Royal Statistical Society. Series A (Statistics
in Society), 159(3):547, 1996. URL: https://www.jstor.org/stable/10.2307/2983331?origin=crossrefhttp:
//www.jstor.org/stable/10.2307/2983331?origin=crossref, doi:10.2307/2983331.

[FrisenASchioler09] Marianne Frisén, E Andersson, and L Schiöler. Robust outbreak surveillance of epi-
demics in Sweden. Statistics in Medicine, 28(3):476–493, 2009. URL: www.interscience.wiley.com,
arXiv:NIHMS150003, doi:10.1002/sim.3483.

[HTST03] Lori Hutwagner, William Thompson, G Matthew Seeman, and Tracee Treadwell. The bioterrorism pre-
paredness and response Early Aberration Reporting System (EARS). Journal of urban health : bulletin
of the New York Academy of Medicine, 80(2 Suppl 1):i89–i96, 2003. URL: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3456557/pdf/11524_2006_Article_200.pdf, doi:10.1007/PL00022319.

[NEF+13] Angela Noufaily, Doyo G. Enki, Paddy Farrington, Paul Garthwaite, Nick Andrews, and André Charlett.
An improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine,
32(7):1206–1222, 2013. URL: http://ojphi.org, doi:10.1002/sim.5595.

[RLM99] G Rossi, L Lampugnani, and M Marchi. an Approximate Cusum Procedure for. Statistics in Medicine,
2122(November 1997):2111–2122, 1999.

[SSHohle16] Maëlle Salmon, Dirk Schumacher, and Michael Höhle. Monitoring Count Time Series in R : Aberration
Detection in Public Health Surveillance. Journal of Statistical Software, 2016. URL: http://www.jstatsoft.
org/v70/i10/, arXiv:1411.1292, doi:10.18637/jss.v070.i10.

[SWHK89] Donna F Stroup, G David Williamson, Joy L Herndon, and John M Karon. Detection of aberrations in
the occurrence of notifiable diseases surveillance data. Statistics in medicine, 8(3):323–329, 1989.

41

http://www.cs.umn.edu/sites/cs.umn.edu/files/tech_reports/07-017.pdf
https://doi.org/10.1145/1541880.1541882
http://link.springer.com/10.1007/3-540-70659-3\T1\textbackslash {}2
http://link.springer.com/10.1007/3-540-70659-3\T1\textbackslash {}2
https://arxiv.org/abs/0-387-31073-8
https://doi.org/10.1007/3-540-70659-3_2
https://www.jstor.org/stable/10.2307/2983331?origin=crossref http://www.jstor.org/stable/10.2307/2983331?origin=crossref
https://www.jstor.org/stable/10.2307/2983331?origin=crossref http://www.jstor.org/stable/10.2307/2983331?origin=crossref
https://doi.org/10.2307/2983331
www.interscience.wiley.com
https://arxiv.org/abs/NIHMS150003
https://doi.org/10.1002/sim.3483
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3456557/pdf/11524_2006_Article_200.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3456557/pdf/11524_2006_Article_200.pdf
https://doi.org/10.1007/PL00022319
http://ojphi.org
https://doi.org/10.1002/sim.5595
http://www.jstatsoft.org/v70/i10/
http://www.jstatsoft.org/v70/i10/
https://arxiv.org/abs/1411.1292
https://doi.org/10.18637/jss.v070.i10

epysurv

42 Bibliography

PYTHON MODULE INDEX

e
epysurv, 38
epysurv.data, 11
epysurv.data.disease_loader, 9
epysurv.data.filter_combination, 9
epysurv.data.salmonella_data, 10
epysurv.data.utils, 11
epysurv.metrics, 12
epysurv.metrics.outbreak_detection, 12
epysurv.models, 34
epysurv.models.timepoint, 21
epysurv.models.timepoint.bayes, 13
epysurv.models.timepoint.boda, 13
epysurv.models.timepoint.cdc, 14
epysurv.models.timepoint.cusum, 14
epysurv.models.timepoint.ears, 15
epysurv.models.timepoint.farrington, 16
epysurv.models.timepoint.glr, 18
epysurv.models.timepoint.hmm, 20
epysurv.models.timepoint.outbreak_p, 20
epysurv.models.timepoint.rki, 21
epysurv.models.timeseries, 32
epysurv.models.timeseries.convert_interface,

28
epysurv.simulation, 34
epysurv.simulation.naive_poisson, 34
epysurv.visualization, 37
epysurv.visualization.model_diagnostics,

37

43

epysurv

44 Python Module Index

INDEX

A
alpha (epysurv.models.timepoint.Bayes attribute), 21
alpha (epysurv.models.timepoint.bayes.Bayes at-

tribute), 13
alpha (epysurv.models.timepoint.Boda attribute), 21
alpha (epysurv.models.timepoint.boda.Boda attribute),

13
alpha (epysurv.models.timepoint.CDC attribute), 22
alpha (epysurv.models.timepoint.cdc.CDC attribute),

14
alpha (epysurv.models.timepoint.ears.EarsC1 at-

tribute), 15
alpha (epysurv.models.timepoint.ears.EarsC2 at-

tribute), 15
alpha (epysurv.models.timepoint.ears.EarsC3 at-

tribute), 15
alpha (epysurv.models.timepoint.EarsC1 attribute), 23
alpha (epysurv.models.timepoint.EarsC2 attribute), 23
alpha (epysurv.models.timepoint.EarsC3 attribute), 23
alpha (epysurv.models.timepoint.Farrington attribute),

25
alpha (epysurv.models.timepoint.farrington.Farrington

attribute), 16
alpha (epysurv.models.timepoint.farrington.FarringtonFlexible

attribute), 17
alpha (epysurv.models.timepoint.FarringtonFlexible at-

tribute), 24
alpha (epysurv.models.timepoint.glr.GLRNegativeBinomial

attribute), 18
alpha (epysurv.models.timepoint.GLRNegativeBinomial

attribute), 26

B
baseline (epysurv.models.timepoint.ears.EarsC1 at-

tribute), 15
baseline (epysurv.models.timepoint.ears.EarsC2 at-

tribute), 15
baseline (epysurv.models.timepoint.ears.EarsC3 at-

tribute), 16
baseline (epysurv.models.timepoint.EarsC1 attribute),

23

baseline (epysurv.models.timepoint.EarsC2 attribute),
23

baseline (epysurv.models.timepoint.EarsC3 attribute),
24

Bayes (class in epysurv.models.timepoint), 21
Bayes (class in epysurv.models.timepoint.bayes), 13
Bayes (class in epysurv.models.timeseries), 32
Bayes (class in epy-

surv.models.timeseries.convert_interface),
28

Boda (class in epysurv.models.timepoint), 21
Boda (class in epysurv.models.timepoint.boda), 13
Boda (class in epysurv.models.timeseries), 32
Boda (class in epysurv.models.timeseries.convert_interface),

28

C
CDC (class in epysurv.models.timepoint), 22
CDC (class in epysurv.models.timepoint.cdc), 14
CDC (class in epysurv.models.timeseries), 32
CDC (class in epysurv.models.timeseries.convert_interface),

29
change (epysurv.models.timepoint.glr.GLRNegativeBinomial

attribute), 18
change (epysurv.models.timepoint.glr.GLRPoisson at-

tribute), 19
change (epysurv.models.timepoint.GLRNegativeBinomial

attribute), 26
change (epysurv.models.timepoint.GLRPoisson at-

tribute), 27
county (epysurv.data.filter_combination.FilterCombination

attribute), 9
Cusum (class in epysurv.models.timepoint), 22
Cusum (class in epysurv.models.timepoint.cusum), 14
Cusum (class in epysurv.models.timeseries), 32
Cusum (class in epy-

surv.models.timeseries.convert_interface),
29

D
data (epysurv.data.filter_combination.FilterCombination

attribute), 9

45

epysurv

decision_boundary (epy-
surv.models.timepoint.Cusum attribute),
22

decision_boundary (epy-
surv.models.timepoint.cusum.Cusum attribute),
14

direction (epysurv.models.timepoint.glr.GLRNegativeBinomial
attribute), 18

direction (epysurv.models.timepoint.glr.GLRPoisson
attribute), 19

direction (epysurv.models.timepoint.GLRNegativeBinomial
attribute), 26

direction (epysurv.models.timepoint.GLRPoisson at-
tribute), 27

disease (epysurv.data.filter_combination.FilterCombination
attribute), 9

E
EarsC1 (class in epysurv.models.timepoint), 23
EarsC1 (class in epysurv.models.timepoint.ears), 15
EarsC1 (class in epysurv.models.timeseries), 32
EarsC1 (class in epy-

surv.models.timeseries.convert_interface),
29

EarsC2 (class in epysurv.models.timepoint), 23
EarsC2 (class in epysurv.models.timepoint.ears), 15
EarsC2 (class in epysurv.models.timeseries), 32
EarsC2 (class in epy-

surv.models.timeseries.convert_interface),
29

EarsC3 (class in epysurv.models.timepoint), 23
EarsC3 (class in epysurv.models.timepoint.ears), 15
epysurv (module), 38
epysurv.data (module), 11
epysurv.data.disease_loader (module), 9
epysurv.data.filter_combination (module),

9
epysurv.data.salmonella_data (module), 10
epysurv.data.utils (module), 11
epysurv.metrics (module), 12
epysurv.metrics.outbreak_detection (mod-

ule), 12
epysurv.models (module), 34
epysurv.models.timepoint (module), 21
epysurv.models.timepoint.bayes (module),

13
epysurv.models.timepoint.boda (module), 13
epysurv.models.timepoint.cdc (module), 14
epysurv.models.timepoint.cusum (module),

14
epysurv.models.timepoint.ears (module), 15
epysurv.models.timepoint.farrington

(module), 16
epysurv.models.timepoint.glr (module), 18

epysurv.models.timepoint.hmm (module), 20
epysurv.models.timepoint.outbreak_p

(module), 20
epysurv.models.timepoint.rki (module), 21
epysurv.models.timeseries (module), 32
epysurv.models.timeseries.convert_interface

(module), 28
epysurv.simulation (module), 34
epysurv.simulation.naive_poisson (mod-

ule), 34
epysurv.visualization (module), 37
epysurv.visualization.model_diagnostics

(module), 37
equal_covariate_effects (epy-

surv.models.timepoint.HMM attribute), 27
equal_covariate_effects (epy-

surv.models.timepoint.hmm.HMM attribute),
20

expanding_windows() (epy-
surv.data.filter_combination.FilterCombination
method), 9

expected_numbers_method (epy-
surv.models.timepoint.Cusum attribute),
22

expected_numbers_method (epy-
surv.models.timepoint.cusum.Cusum attribute),
14

F
Farrington (class in epysurv.models.timepoint), 25
Farrington (class in epy-

surv.models.timepoint.farrington), 16
Farrington (class in epysurv.models.timeseries), 33
Farrington (class in epy-

surv.models.timeseries.convert_interface),
29

FarringtonFlexible (class in epy-
surv.models.timepoint), 24

FarringtonFlexible (class in epy-
surv.models.timepoint.farrington), 17

FarringtonFlexible (class in epy-
surv.models.timeseries), 32

FarringtonFlexible (class in epy-
surv.models.timeseries.convert_interface),
29

FilterCombination (class in epy-
surv.data.filter_combination), 9

from_ts_input() (epy-
surv.data.filter_combination.SplitYears class
method), 10

G
get_outbreak_begins() (in module epy-

surv.simulation.naive_poisson), 34

46 Index

epysurv

ghozzi_case_score() (in module epy-
surv.metrics.outbreak_detection), 12

ghozzi_score() (in module epysurv.metrics), 12
ghozzi_score() (in module epy-

surv.metrics.outbreak_detection), 12
ghozzi_score_plot() (in module epy-

surv.visualization.model_diagnostics), 37
glr_test_threshold (epy-

surv.models.timepoint.glr.GLRNegativeBinomial
attribute), 18

glr_test_threshold (epy-
surv.models.timepoint.glr.GLRPoisson at-
tribute), 19

glr_test_threshold (epy-
surv.models.timepoint.GLRNegativeBinomial
attribute), 26

glr_test_threshold (epy-
surv.models.timepoint.GLRPoisson attribute),
26, 27

GLRNegativeBinomial (class in epy-
surv.models.timepoint), 26

GLRNegativeBinomial (class in epy-
surv.models.timepoint.glr), 18

GLRNegativeBinomial (class in epy-
surv.models.timeseries), 33

GLRNegativeBinomial (class in epy-
surv.models.timeseries.convert_interface),
30

GLRPoisson (class in epysurv.models.timepoint), 26
GLRPoisson (class in epysurv.models.timepoint.glr),

19
GLRPoisson (class in epysurv.models.timeseries), 33
GLRPoisson (class in epy-

surv.models.timeseries.convert_interface),
31

H
HMM (class in epysurv.models.timepoint), 27
HMM (class in epysurv.models.timepoint.hmm), 20
HMM (class in epysurv.models.timeseries), 33
HMM (class in epysurv.models.timeseries.convert_interface),

31

I
include_recent_year (epy-

surv.models.timepoint.Bayes attribute), 21
include_recent_year (epy-

surv.models.timepoint.bayes.Bayes attribute),
13

include_recent_year (epy-
surv.models.timepoint.RKI attribute), 28

include_recent_year (epy-
surv.models.timepoint.rki.RKI attribute),
21

L
load_diseases() (in module epysurv.data), 11
load_diseases() (in module epy-

surv.data.disease_loader), 9

M
m (epysurv.models.timepoint.glr.GLRNegativeBinomial

attribute), 18
m (epysurv.models.timepoint.glr.GLRPoisson attribute),

19
m (epysurv.models.timepoint.GLRNegativeBinomial at-

tribute), 26
m (epysurv.models.timepoint.GLRPoisson attribute), 26,

27
max_upperbound_cases (epy-

surv.models.timepoint.outbreak_p.OutbreakP
attribute), 20

max_upperbound_cases (epy-
surv.models.timepoint.OutbreakP attribute),
28

mc_munu (epysurv.models.timepoint.Boda attribute), 22
mc_munu (epysurv.models.timepoint.boda.Boda at-

tribute), 13
mc_y (epysurv.models.timepoint.Boda attribute), 22
mc_y (epysurv.models.timepoint.boda.Boda attribute),

13
min_cases_in_past_periods (epy-

surv.models.timepoint.Farrington attribute),
25

min_cases_in_past_periods (epy-
surv.models.timepoint.farrington.Farrington
attribute), 16

min_cases_in_past_periods (epy-
surv.models.timepoint.farrington.FarringtonFlexible
attribute), 17

min_cases_in_past_periods (epy-
surv.models.timepoint.FarringtonFlexible
attribute), 24

min_sigma (epysurv.models.timepoint.ears.EarsC1 at-
tribute), 15

min_sigma (epysurv.models.timepoint.ears.EarsC2 at-
tribute), 15

min_sigma (epysurv.models.timepoint.EarsC1 at-
tribute), 23

min_sigma (epysurv.models.timepoint.EarsC2 at-
tribute), 23

N
n_harmonics (epysurv.models.timepoint.HMM at-

tribute), 27
n_harmonics (epysurv.models.timepoint.hmm.HMM

attribute), 20
n_hidden_states (epysurv.models.timepoint.HMM

attribute), 27

Index 47

epysurv

n_hidden_states (epy-
surv.models.timepoint.hmm.HMM attribute),
20

n_observations (epysurv.models.timepoint.HMM
attribute), 27

n_observations (epy-
surv.models.timepoint.hmm.HMM attribute),
20

negbin_alpha (epysurv.models.timepoint.Cusum at-
tribute), 22

negbin_alpha (epy-
surv.models.timepoint.cusum.Cusum attribute),
14

O
OutbreakP (class in epysurv.models.timepoint), 28
OutbreakP (class in epy-

surv.models.timepoint.outbreak_p), 20
OutbreakP (class in epysurv.models.timeseries), 33
OutbreakP (class in epy-

surv.models.timeseries.convert_interface),
31

P
past_period_cutoff (epy-

surv.models.timepoint.Farrington attribute),
25

past_period_cutoff (epy-
surv.models.timepoint.farrington.Farrington
attribute), 16

past_period_cutoff (epy-
surv.models.timepoint.farrington.FarringtonFlexible
attribute), 17

past_period_cutoff (epy-
surv.models.timepoint.FarringtonFlexible
attribute), 24

past_weeks_not_included (epy-
surv.models.timepoint.farrington.FarringtonFlexible
attribute), 18

past_weeks_not_included (epy-
surv.models.timepoint.FarringtonFlexible
attribute), 25

pathogen (epysurv.data.filter_combination.FilterCombination
attribute), 9

plot_confusion_matrix() (in module epy-
surv.visualization.model_diagnostics), 37

plot_prediction() (in module epy-
surv.visualization.model_diagnostics), 37

PointSource (class in epysurv.simulation), 34
power_transform (epy-

surv.models.timepoint.Farrington attribute),
25

power_transform (epy-
surv.models.timepoint.farrington.Farrington

attribute), 16
prior (epysurv.models.timepoint.Boda attribute), 21
prior (epysurv.models.timepoint.boda.Boda attribute),

13

Q
quantile_method (epysurv.models.timepoint.Boda

attribute), 22
quantile_method (epy-

surv.models.timepoint.boda.Boda attribute),
13

R
reference_value (epysurv.models.timepoint.Cusum

attribute), 22
reference_value (epy-

surv.models.timepoint.cusum.Cusum attribute),
14

reweight (epysurv.models.timepoint.Farrington
attribute), 25

reweight (epysurv.models.timepoint.farrington.Farrington
attribute), 16

reweight (epysurv.models.timepoint.farrington.FarringtonFlexible
attribute), 17

reweight (epysurv.models.timepoint.FarringtonFlexible
attribute), 24

RKI (class in epysurv.models.timepoint), 28
RKI (class in epysurv.models.timepoint.rki), 21
RKI (class in epysurv.models.timeseries), 33
RKI (class in epysurv.models.timeseries.convert_interface),

32

S
salmonella() (in module epysurv.data), 11
salmonella() (in module epy-

surv.data.salmonella_data), 10
sampling_method (epysurv.models.timepoint.Boda

attribute), 22
sampling_method (epy-

surv.models.timepoint.boda.Boda attribute),
13

season (epysurv.models.timepoint.Boda attribute), 21
season (epysurv.models.timepoint.boda.Boda at-

tribute), 13
SeasonalNoiseNegativeBinomial (class in epy-

surv.simulation), 35
SeasonalNoisePoisson (class in epy-

surv.simulation), 36
simulate() (epysurv.simulation.PointSource method),

35
simulate() (epysurv.simulation.SeasonalNoiseNegativeBinomial

method), 36
simulate() (epysurv.simulation.SeasonalNoisePoisson

method), 36

48 Index

epysurv

simulate_outbreaks() (in module epy-
surv.simulation.naive_poisson), 34

SplitYears (class in epysurv.data.filter_combination),
10

T
test() (epysurv.data.salmonella_data.TimeseriesClassificationData

property), 10
test() (epysurv.data.TimeseriesClassificationData

property), 11
test_final() (epy-

surv.data.filter_combination.TimeseriesClassificationData
property), 10

test_gen() (epysurv.data.filter_combination.TimeseriesClassificationData
property), 10

test_gen() (epysurv.data.salmonella_data.TimeseriesClassificationData
property), 10

test_gen() (epysurv.data.TimeseriesClassificationData
property), 11

threshold (epysurv.models.timepoint.outbreak_p.OutbreakP
attribute), 20

threshold (epysurv.models.timepoint.OutbreakP at-
tribute), 28

threshold_method (epy-
surv.models.timepoint.farrington.FarringtonFlexible
attribute), 18

threshold_method (epy-
surv.models.timepoint.FarringtonFlexible
attribute), 25

timedelta_weeks() (in module epysurv.data.utils),
11

timeseries_classifaction_generator() (in
module epysurv.data), 11

timeseries_classifaction_generator() (in
module epysurv.data.salmonella_data), 10

timeseries_classifcation() (in module epy-
surv.data), 11

timeseries_classifcation() (in module epy-
surv.data.salmonella_data), 11

TimeseriesClassificationData (class in epy-
surv.data), 11

TimeseriesClassificationData (class in epy-
surv.data.filter_combination), 10

TimeseriesClassificationData (class in epy-
surv.data.salmonella_data), 10

train() (epysurv.data.salmonella_data.TimeseriesClassificationData
property), 10

train() (epysurv.data.TimeseriesClassificationData
property), 11

train_final() (epy-
surv.data.filter_combination.TimeseriesClassificationData
property), 10

train_gen() (epysurv.data.filter_combination.TimeseriesClassificationData
property), 10

train_gen() (epysurv.data.salmonella_data.TimeseriesClassificationData
property), 10

train_gen() (epysurv.data.TimeseriesClassificationData
property), 11

transform (epysurv.models.timepoint.Cusum at-
tribute), 22

transform (epysurv.models.timepoint.cusum.Cusum
attribute), 14

trend (epysurv.models.timepoint.Boda attribute), 21
trend (epysurv.models.timepoint.boda.Boda attribute),

13
trend (epysurv.models.timepoint.Farrington attribute),

25
trend (epysurv.models.timepoint.farrington.Farrington

attribute), 16
trend (epysurv.models.timepoint.farrington.FarringtonFlexible

attribute), 17
trend (epysurv.models.timepoint.FarringtonFlexible at-

tribute), 24
trend (epysurv.models.timepoint.HMM attribute), 27
trend (epysurv.models.timepoint.hmm.HMM attribute),

20
trend_threshold (epy-

surv.models.timepoint.farrington.FarringtonFlexible
attribute), 17

trend_threshold (epy-
surv.models.timepoint.FarringtonFlexible
attribute), 24

U
upperbound_statistic (epy-

surv.models.timepoint.glr.GLRNegativeBinomial
attribute), 18

upperbound_statistic (epy-
surv.models.timepoint.glr.GLRPoisson at-
tribute), 19

upperbound_statistic (epy-
surv.models.timepoint.GLRNegativeBinomial
attribute), 26

upperbound_statistic (epy-
surv.models.timepoint.GLRPoisson attribute),
27

upperbound_statistic (epy-
surv.models.timepoint.outbreak_p.OutbreakP
attribute), 20

upperbound_statistic (epy-
surv.models.timepoint.OutbreakP attribute),
28

W
weights_threshold (epy-

surv.models.timepoint.farrington.FarringtonFlexible
attribute), 17

Index 49

epysurv

weights_threshold (epy-
surv.models.timepoint.FarringtonFlexible
attribute), 24

window_half_width (epy-
surv.models.timepoint.Bayes attribute), 21

window_half_width (epy-
surv.models.timepoint.bayes.Bayes attribute),
13

window_half_width (epy-
surv.models.timepoint.CDC attribute), 22

window_half_width (epy-
surv.models.timepoint.cdc.CDC attribute),
14

window_half_width (epy-
surv.models.timepoint.Farrington attribute),
25

window_half_width (epy-
surv.models.timepoint.farrington.Farrington
attribute), 16

window_half_width (epy-
surv.models.timepoint.farrington.FarringtonFlexible
attribute), 17

window_half_width (epy-
surv.models.timepoint.FarringtonFlexible
attribute), 24

window_half_width (epysurv.models.timepoint.RKI
attribute), 28

window_half_width (epy-
surv.models.timepoint.rki.RKI attribute),
21

X
x_max (epysurv.models.timepoint.glr.GLRNegativeBinomial

attribute), 19
x_max (epysurv.models.timepoint.GLRNegativeBinomial

attribute), 26

Y
years_back (epysurv.models.timepoint.Bayes at-

tribute), 21
years_back (epysurv.models.timepoint.bayes.Bayes

attribute), 13
years_back (epysurv.models.timepoint.CDC at-

tribute), 22
years_back (epysurv.models.timepoint.cdc.CDC at-

tribute), 14
years_back (epysurv.models.timepoint.Farrington at-

tribute), 25
years_back (epysurv.models.timepoint.farrington.Farrington

attribute), 16
years_back (epysurv.models.timepoint.farrington.FarringtonFlexible

attribute), 17
years_back (epysurv.models.timepoint.FarringtonFlexible

attribute), 24

years_back (epysurv.models.timepoint.RKI attribute),
28

years_back (epysurv.models.timepoint.rki.RKI at-
tribute), 21

50 Index

	Quickstart
	Installation
	Demo

	Outbreak Detection
	Time Point Classification
	Time Series Classification
	Models

	User Guide
	Data Format
	Fitting
	Prediction
	Using Time Series Classification Models

	epysurv
	epysurv package

	Indices and tables
	Bibliography
	Python Module Index
	Index

