

epysurv: Epidemiological Surveillance in Python

epysurv is a pythonic wrapper around the R surveillance package [https://cran.r-project.org/web/packages/surveillance/index.html].
It’s main goal is to predict disease outbreaks, right
now focusing on univariate count time series.
epsurv operates on pandas DataFrames and strives to implement a scikit-learn [https://scikit-learn.org/stable/] like API.

epysurv supports two problem formalizations of outbreak detection: time point classification and time series classification.

This documentation mainly explains the usage of epysurv and the ideas behind the problem formalizations. For more
details about the algorithms have a look at the vignette [https://cran.r-project.org/web/packages/surveillance/surveillance.pdf]
of the R surveillance package or the literature references in the model docstrings.

This package was originally developed at the Robert Koch Institute in the Signale Project [https://rki.de/signale-project] .

Contents

	Quickstart
	Installation

	Demo

	Outbreak Detection
	Time Point Classification

	Time Series Classification

	Models

	User Guide
	Data Format

	Fitting

	Prediction

	Using Time Series Classification Models

	epysurv
	epysurv package

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Installation

epysurv should be installed through conda [https://docs.conda.io/en/latest/]

conda create -n epysurv
conda activate epysurv
conda install -c conda-forge epysurv

Demo

A quick tour to using epysurv.

Outbreak Detection

Surveillance algorithms usually work on regular spaced aggregated time series of case counts.
Let \(\mathbf{x} = (x_1, \dots x_T)\) be such a time series with entries at regularly spaced,
discrete timepoints \(t\).
An entry \(x_t\) of that time series is defined as the number of observed case
counts in that time period.

Time Point Classification

Based on this we can view the problem as a sequential supervised learning problem
[Die02], in which
the sequence of counts is paired with a sequence of outbreak labels \((\mathbf{x}, \mathbf{y})\), with
\(\mathbf{x} = (x_1, \dotsc, x_T), x_i \in \mathbb{N}_0\) and \(y_i \in \mathbb{B}\). For each
timepoint \(t\) a boolean label is assigned, corresponding to whether there were outbreak cases
present in the aggregation
time interval. We call this problem time point classification. This is the standard
formulation of common surveillance algorithms.

Time Series Classification

The time point formulation can be extended into a time series formulation by dividing the time series \(\mathbf{x}\)
into smaller time series and assigning the label of the last time point to the whole time series. Thus
a data set \(\{(\mathbf{x}_j, y_j)\}_{j=1}^T\) is obtained. This formulation is especially useful for incorporating
reporting delay. That means that the information at time point \(t = j\) can be quite different
depending on whether \(j\) is relatively recent, e.g. \(j = T\) or already some time in the past. This
is due to the fact that information arrives sometimes slowly in epidemiological surveillance systems.
We call this problem formulation time series classification.

Models

As of now all models included in epysurv work on univariate time series of
counts. Extensions to multivariate time series and incorporation of spatial
data exist in the R surveillance package, but their inclusion is only
planned for later releases.

The currently included models can be viewed as semi-supervised
techniques from a machine learning or anomaly detection perspective [CBK09].
All models fit historic data, assuming that they represent the normal state of the system.
Having fitted the data, an estimate for the case counts of the current week is computed.
This estimate is compared to the number of cases reported in the current
If the observed case count exceeds the expected number by some threshold,
an alarm is raised. Most models in fact compute a predictive distribution for the
estimated number of case counts and raise an alarm if the actual number exceeds a
certain quantile of this distribution.

Window-based Approaches

The simplest form of outbreak detection algorithms are window-based
approaches. For them the expectation for the current week is computed
from a moving window of fixed size. For example the EarsC1
algorithm, computes its predictive distribution based the mean and
standard deviation of the last seven timepoints, using a normal distribution.

Because of the short time interval considered, these approaches are naturally
insensitive against seasonality and trend. However, recent outbreaks can
contaminate the data, reducing the sensitivity of the algorithms.

This category includes the Ears-family [HTST03],
CDC [SWHK89] and the RKI [SSHohle16] algorithm.

GLM-based Approaches

Approaches based on Generalized Linear Models (GLMs) form a popular
group of outbreak detection algorithms. They compute a predictive distribution for
the current week based on fitting a GLM to previous data. An alarm is raised
if the current observation is unlikely under the predictive distribution
controlled by some $alpha$ value.
Often Poisson or Negative Binomial models are used to do justice to
the count nature of the data. Moreover, terms to accommodate seasonality
and trend are often incorporated as well. GLM-based approaches included
the classical Farrington algorithm [FABC96] and its more
recent extension [NEF+13].

Cusum-based Approaches

Both window-based and GLM approaches have the downside that they
only incorporate evidence from the current week. Larger outbreaks
that build up slowly could therefore easily be missed. Cusum-based approaches
are inspired by models from statistical process control~cite{Oakland2007}
and incorporate evidence from previous timepoints. Instead of computing a predictive
distribution, evidence that observed case counts do originate from an epidemic is accumulated
until a certain threshold is exceeded and an alarm is raised. Then the sum
is reset.

Cusum-based approaches include the Cusum [RLM99],
generalized likelihood ratio methods based on Poisson:cite:Hohle2006
or negative binomial distributions~cite{Hohle2008} and
the OutbreakP method [FrisenASchioler09].

	CBK09

	Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection. ACM Computing Surveys, 41(3):1–58, jul 2009. URL: http://www.cs.umn.edu/sites/cs.umn.edu/files/tech_reports/07-017.pdf, doi:10.1145/1541880.1541882 [https://doi.org/10.1145/1541880.1541882].

	Die02

	Thomas G Dietterich. Machine Learning for Sequential Data: A Review. In Joint IAPR international workshops on statistical techniques in pattern recognition (SPR) and structural and syntactic pattern recognition (SSPR), 15–30. Springer, Berlin, Heidelberg, 2002. URL: http://link.springer.com/10.1007/3-540-70659-3\2, arXiv:0-387-31073-8 [https://arxiv.org/abs/0-387-31073-8], doi:10.1007/3-540-70659-3_2 [https://doi.org/10.1007/3-540-70659-3_2].

	FABC96

	C. P. Farrington, N. J. Andrews, A. D. Beale, and M. A. Catchpole. A Statistical Algorithm for the Early Detection of Outbreaks of Infectious Disease. Journal of the Royal Statistical Society. Series A (Statistics in Society), 159(3):547, 1996. URL: https://www.jstor.org/stable/10.2307/2983331?origin=crossref http://www.jstor.org/stable/10.2307/2983331?origin=crossref, doi:10.2307/2983331 [https://doi.org/10.2307/2983331].

	FrisenASchioler09

	Marianne Frisén, E Andersson, and L Schiöler. Robust outbreak surveillance of epidemics in Sweden. Statistics in Medicine, 28(3):476–493, 2009. URL: www.interscience.wiley.com, arXiv:NIHMS150003 [https://arxiv.org/abs/NIHMS150003], doi:10.1002/sim.3483 [https://doi.org/10.1002/sim.3483].

	HTST03

	Lori Hutwagner, William Thompson, G Matthew Seeman, and Tracee Treadwell. The bioterrorism preparedness and response Early Aberration Reporting System (EARS). Journal of urban health : bulletin of the New York Academy of Medicine, 80(2 Suppl 1):i89–i96, 2003. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3456557/pdf/11524_2006_Article_200.pdf, doi:10.1007/PL00022319 [https://doi.org/10.1007/PL00022319].

	NEF+13

	Angela Noufaily, Doyo G. Enki, Paddy Farrington, Paul Garthwaite, Nick Andrews, and André Charlett. An improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine, 32(7):1206–1222, 2013. URL: http://ojphi.org, doi:10.1002/sim.5595 [https://doi.org/10.1002/sim.5595].

	RLM99

	G Rossi, L Lampugnani, and M Marchi. an Approximate Cusum Procedure for. Statistics in Medicine, 2122(November 1997):2111–2122, 1999.

	SSHohle16

	Maëlle Salmon, Dirk Schumacher, and Michael Höhle. Monitoring Count Time Series in R : Aberration Detection in Public Health Surveillance. Journal of Statistical Software, 2016. URL: http://www.jstatsoft.org/v70/i10/, arXiv:1411.1292 [https://arxiv.org/abs/1411.1292], doi:10.18637/jss.v070.i10 [https://doi.org/10.18637/jss.v070.i10].

	SWHK89

	Donna F Stroup, G David Williamson, Joy L Herndon, and John M Karon. Detection of aberrations in the occurrence of notifiable diseases surveillance data. Statistics in medicine, 8(3):323–329, 1989.

User Guide

Using epysurv models should be straightforward if you
are familiar with scikit-learn and pandas.

Data Format

Let’s first consider the models in the
epysurv.models.timepoint package.
Each model has a fit and a predict
method that takes a pandas.DataFrame representing an
epidemiological count time series of the following form:

 n_cases n_outbreak_cases
2004-01-05 0 0
2004-01-12 0 0
2004-01-19 2 0
2004-01-26 2 0
2004-02-02 1 0

The data frame needs to have a regular DatetimeIndex and
two columns containing case counts. n_cases represents the
total number of cases observed and n_outbreak_cases the number
of cases are labeled as belonging to an outbreak. Therefore
n_cases should always be bigger or equal to n_outbreak_cases
as there can not be more outbreak cases as cases in total.
Note also that each row represents the number of cases
observed in the period between the row’s timepoint and the
next timepoint. So in the above example the first row denotes
that there were zero cases observed from 2004-01-05 up to
2004-01-11 inclusive.

Fitting

When passing the data frame to fit the outbreak cases are
subtracted from the total cases to obtain the in control
time series, i.e. the time series without outbreaks.

If you do not have any labeled outbreak data, but just the raw
counts, the n_cases column will be taken as is
under the assumption that your data is in fact
in control data. A warning is still issued in this case.

Prediction

At prediction time only the total case counts are required.
The data frame passed to predict needs to consist
of observations that are spaced at the same regular time intervals
as the training data. All data points should lie strictly
in the future of the training data. The data frame returned
is the original data augmented by an alarm column that
indicated whether the model predicts an outbreak at that time
point or not.

 n_cases alarm
2011-01-03 1 0.0
2011-01-10 0 0.0
2011-01-17 3 0.0
2011-01-24 3 0.0
2011-01-31 3 0.0

Using Time Series Classification Models

For each each model in the epysurv.models.timepoint package there
is a corresponding model in the epysurv.models.timeseries package.
These models basically perform the same task, but make a binary
prediction (alarm / no alarm) for an entire time series instead of
just a single time point. See Time Series Classification
for a more detailed discussion. Therefore, bot fit and
predict take iterables of data frames described above and labels:
Iterable[Tuple[DataFrame, bool]]. The label indicates whether
the last time point of the time series is to be considered an outbreak.
The predict method in this case only returns a time series of alarms.

epysurv

	epysurv package
	Subpackages
	epysurv.data package
	Submodules

	epysurv.data.disease_loader module

	epysurv.data.filter_combination module

	epysurv.data.salmonella_data module

	epysurv.data.utils module

	Module contents

	epysurv.metrics package
	Submodules

	epysurv.metrics.outbreak_detection module

	Module contents

	epysurv.models package
	Subpackages

	Module contents

	epysurv.simulation package
	Submodules

	epysurv.simulation.naive_poisson module

	Module contents

	epysurv.visualization package
	Submodules

	epysurv.visualization.model_diagnostics module

	Module contents

	Module contents

epysurv package

Subpackages

	epysurv.data package
	Submodules

	epysurv.data.disease_loader module

	epysurv.data.filter_combination module

	epysurv.data.salmonella_data module

	epysurv.data.utils module

	Module contents

	epysurv.metrics package
	Submodules

	epysurv.metrics.outbreak_detection module

	Module contents

	epysurv.models package
	Subpackages
	epysurv.models.timepoint package
	Submodules

	epysurv.models.timepoint.bayes module

	epysurv.models.timepoint.boda module

	epysurv.models.timepoint.cdc module

	epysurv.models.timepoint.cusum module

	epysurv.models.timepoint.ears module

	epysurv.models.timepoint.farrington module

	epysurv.models.timepoint.glr module

	epysurv.models.timepoint.hmm module

	epysurv.models.timepoint.outbreak_p module

	epysurv.models.timepoint.rki module

	Module contents

	epysurv.models.timeseries package
	Submodules

	epysurv.models.timeseries.convert_interface module

	Module contents

	Module contents

	epysurv.simulation package
	Submodules

	epysurv.simulation.naive_poisson module

	Module contents

	epysurv.visualization package
	Submodules

	epysurv.visualization.model_diagnostics module

	Module contents

Module contents

Surveillance algorithms in Python.

	Currently not implemented:
	
	rogerson as it requires in control values to be specified

epysurv.data package

Submodules

epysurv.data.disease_loader module

	
epysurv.data.disease_loader.load_diseases(path)

	

epysurv.data.filter_combination module

	
class epysurv.data.filter_combination.FilterCombination(disease: str, county: str, pathogen: str, data: pandas.core.frame.DataFrame)

	Bases: object

Representation of case records filtered by combination of county and pathogen.

	
disease

	The disease from which the cases suffer.

	
county

	The county in which the cases where reported.

	
pathogen

	The pathogen subtype.

	
data

	The case records.

	
expanding_windows(min_len_in_weeks: int, split_years: epysurv.data.filter_combination.SplitYears) → epysurv.data.filter_combination.TimeseriesClassificationData

	Transform case records into expanding time series.

	Parameters

	
	min_len_in_weeks – The minimum length of each time series.

	split_years – The years at which to split the data into train and test data.

	Returns

	Compound object of train and test data as generators and dataframes.

	
class epysurv.data.filter_combination.SplitYears(start: pandas._libs.tslibs.timestamps.Timestamp, middle: pandas._libs.tslibs.timestamps.Timestamp, end: pandas._libs.tslibs.timestamps.Timestamp)

	Bases: object

Data structure that holds the years data should be split into training and test set.

start to middle is the training data. middle to end is the test data.

	
classmethod from_ts_input(start, middle, end)

	Create instance from inputs that are passed through pd.Timestamp.

	
class epysurv.data.filter_combination.TimeseriesClassificationData(train_final, test_final, train_gen, test_gen)

	Bases: tuple

	
property test_final

	Alias for field number 1

	
property test_gen

	Alias for field number 3

	
property train_final

	Alias for field number 0

	
property train_gen

	Alias for field number 2

epysurv.data.salmonella_data module

	
class epysurv.data.salmonella_data.TimeseriesClassificationData(train, test, train_gen, test_gen)

	Bases: tuple

	
property test

	Alias for field number 1

	
property test_gen

	Alias for field number 3

	
property train

	Alias for field number 0

	
property train_gen

	Alias for field number 2

	
epysurv.data.salmonella_data.salmonella()

	Count data from Salmonella newport in Germany.

	
epysurv.data.salmonella_data.timeseries_classifaction_generator(train: pandas.core.frame.DataFrame, test: pandas.core.frame.DataFrame, offset_in_weeks: int) → Tuple[Generator, Generator]

	Turn a time point classification problem into a time series classification problem.

	
epysurv.data.salmonella_data.timeseries_classifcation(train: pandas.core.frame.DataFrame, test: pandas.core.frame.DataFrame, offset_in_weeks: int) → epysurv.data.salmonella_data.TimeseriesClassificationData

	Convert standard timeseries for usage in time series classification.

epysurv.data.utils module

	
epysurv.data.utils.timedelta_weeks(weeks: int)

	

Module contents

Module for handling data transformation and example data.

	
epysurv.data.load_diseases(path)

	

	
class epysurv.data.TimeseriesClassificationData(train, test, train_gen, test_gen)

	Bases: tuple

	
property test

	Alias for field number 1

	
property test_gen

	Alias for field number 3

	
property train

	Alias for field number 0

	
property train_gen

	Alias for field number 2

	
epysurv.data.salmonella()

	Count data from Salmonella newport in Germany.

	
epysurv.data.timeseries_classifaction_generator(train: pandas.core.frame.DataFrame, test: pandas.core.frame.DataFrame, offset_in_weeks: int) → Tuple[Generator, Generator]

	Turn a time point classification problem into a time series classification problem.

	
epysurv.data.timeseries_classifcation(train: pandas.core.frame.DataFrame, test: pandas.core.frame.DataFrame, offset_in_weeks: int) → epysurv.data.salmonella_data.TimeseriesClassificationData

	Convert standard timeseries for usage in time series classification.

epysurv.metrics package

Submodules

epysurv.metrics.outbreak_detection module

	
epysurv.metrics.outbreak_detection.ghozzi_case_score(prediction_result: pandas.core.frame.DataFrame) → float

	Evalutes the performance of an outbreak detection.

Using the following formula:
sum(p[t] * c[t] - (1 - p[t]) * c[t] - (p[t] != o[t]) * e[t] for t in timeseries) / sum(c)
p: alarm
c: count of outbreak cases
o: outbreak
e: endemic cases

	Parameters

	prediction_result – Dataframe containing the columns “alarm”, “outbreak” and “outbreak_cases”

	Returns

	A maximum score of 1.

	
epysurv.metrics.outbreak_detection.ghozzi_score(prediction_result: pandas.core.frame.DataFrame) → float

	Evalutes the performance of an outbreak detection.

Using the following formula:
sum(p[t] * c[t] - (1 - p[t]) * c[t] - (p[t] != o[t]) * mean(c) for t in timeseries) / sum(c)
p: alarm
c: count of outbreak cases
o: outbreak

	Parameters

	prediction_result – Dataframe containing the columns “alarm”, “outbreak” and “outbreak_cases”

	Returns

	A maximum score of 1.

Module contents

	
epysurv.metrics.ghozzi_score(prediction_result: pandas.core.frame.DataFrame) → float

	Evalutes the performance of an outbreak detection.

Using the following formula:
sum(p[t] * c[t] - (1 - p[t]) * c[t] - (p[t] != o[t]) * mean(c) for t in timeseries) / sum(c)
p: alarm
c: count of outbreak cases
o: outbreak

	Parameters

	prediction_result – Dataframe containing the columns “alarm”, “outbreak” and “outbreak_cases”

	Returns

	A maximum score of 1.

epysurv.models package

Subpackages

	epysurv.models.timepoint package
	Submodules

	epysurv.models.timepoint.bayes module

	epysurv.models.timepoint.boda module

	epysurv.models.timepoint.cdc module

	epysurv.models.timepoint.cusum module

	epysurv.models.timepoint.ears module

	epysurv.models.timepoint.farrington module

	epysurv.models.timepoint.glr module

	epysurv.models.timepoint.hmm module

	epysurv.models.timepoint.outbreak_p module

	epysurv.models.timepoint.rki module

	Module contents

	epysurv.models.timeseries package
	Submodules

	epysurv.models.timeseries.convert_interface module

	Module contents

Module contents

epysurv.models.timepoint package

Submodules

epysurv.models.timepoint.bayes module

	
class epysurv.models.timepoint.bayes.Bayes(years_back: int = 0, window_half_width: int = 6, include_recent_year: bool = True, alpha: float = 0.05)

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Evaluation of timepoints with the Bayes subsystem.

	
years_back

	How many years back in time to include when forming the base counts.

	
window_half_width

	Number of weeks to include before and after the current week in each year.

	
include_recent_year

	is a boolean to decide if the year of timePoint also contributes w reference values.

	
alpha

	The parameter alpha is the (1 − α)-quantile to use in order to calculate the upper threshold. As default b, w, actY are set for the Bayes 1 system with alpha=0.05.

References

	1

	Riebler, A. (2004), Empirischer Vergleich von statistischen Methoden zur Ausbruchserkennung bei
Surveillance Daten, Bachelor’s thesis

	2

	Höhle, M., & Riebler, A. (2005). Höhle, Riebler: The R-Package “surveillance.” Sonderforschungsbereich (Vol. 386). Retrieved from https://epub.ub.uni-muenchen.de/1791/1/paper_422.pdf

epysurv.models.timepoint.boda module

	
class epysurv.models.timepoint.boda.Boda(trend: bool = False, season: bool = False, prior: str = 'iid', alpha: float = 0.05, mc_munu: int = 100, mc_y: int = 10, quantile_method: str = 'MM')

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The Boda model.

	
trend

	Boolean indicating whether a linear trend term should be included in the model for the expectation the log-scale

	
season

	Boolean to indicate whether a cyclic spline should be included.

	
prior

	Either of “iid”, “rw1” or “rw2”.

	
alpha

	The threshold for declaring an observed count as an aberration is the (1 − α) · 100% quantile of the predictive posterior.

	
mc_munu

	

	
mc_y

	Number of samples of y to generate for each pair of the mean and size parameter. A total of mc.munu × mc.y samples are generated.

	
sampling_method

	Should one sample from the parameters joint distribution (joint) or from their respective marginal posterior distribution (marginals)

	
quantile_method

	Either of “MC” or “MM”. Indicates how to compute the quantile
based on the posterior distribution (no matter the inference method):
either by sampling mc.munu values from the posterior distribution of the
parameters and then for each sampled parameters vector sampling mc.y response
values so that one gets a vector of response values based on which
one computes an empirical quantile (MC method, as explained in Manitz
and Höhle 2013); or by sampling mc_munu from the posterior distribution
of the parameters and then compute the quantile of the mixture distribution
using bisectioning, which is faster.

epysurv.models.timepoint.cdc module

	
class epysurv.models.timepoint.cdc.CDC(years_back: int = 5, window_half_width: int = 1, alpha: float = 0.001)

	Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

The CDC model.

	
years_back

	How many years back in time to include when forming the base counts.

	
window_half_width

	Number of weeks to include before and after the current week in each year.

	
alpha

	An approximate (two-sided)(1 − α) prediction interval is calculated.

References

	1

	Stroup, D., G. Williamson, J. Herndon, and J. Karon (1989). Detection of aberrations in the occurence of
notifiable diseases surveillance data. Statistics in Medicine 8, 323-329.

	2

	Farrington, C. and N. Andrews (2003). Monitoring the Health of Populations, Chapter Outbreak
Detection: Application to Infectious Disease Surveillance, pp. 203-231. Oxford University Press.

epysurv.models.timepoint.cusum module

	
class epysurv.models.timepoint.cusum.Cusum(reference_value: float = 1.04, decision_boundary: float = 2.26, expected_numbers_method: str = 'mean', transform: str = 'standard', negbin_alpha: float = 0.1)

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The Cusum model.

	
reference_value

	

	
decision_boundary

	

	
expected_numbers_method

	How to determine the expected number of cases – the following arguments are possible: {“glm”, “mean”}.

	mean
	Use the mean of all data points passed to fit.

	glm
	Fit a glm to the data ponts passed to fit.

	
transform

	One of the following transformations (warning: Anscombe and NegBin transformations are experimental)
- standard standardized variables z1 (based on asymptotic normality) - This is the default.
- rossi standardized variables z3 as proposed by Rossi
- anscombe anscombe residuals – experimental
- anscombe2nd anscombe residuals as in Pierce and Schafer (1986) based on 2nd order approximation of E(X) – experimental
- pearsonNegBin compute Pearson residuals for NegBin – experimental
- anscombeNegBin anscombe residuals for NegBin – experimental
- "none" no transformation

	
negbin_alpha

	Parameter of the negative binomial distribution, such that the variance is \(m + α \cdot m2\).

References

	1

	
	Rossi, L. Lampugnani and M. Marchi (1999), An approximate CUSUM procedure for surveillance of health events, Statistics in Medicine, 18, 2111–2122

	2

	D. A. Pierce and D. W. Schafer (1986), Residuals in Generalized Linear Models, Journal of the
American Statistical Association, 81, 977–986

epysurv.models.timepoint.ears module

	
class epysurv.models.timepoint.ears.EarsC1(alpha: float = 0.001, baseline: int = 7, min_sigma: float = 0)

	Bases: epysurv.models.timepoint.ears._EarsBase

Computes a threshold for the number of counts based on values from the recent past.

This is then compared to the observed number of counts. If the observation is above
a specific quantile of the prediction interval, then an alarm is raised.
This method is especially useful for data without many
historic values, since it only needs counts from the recent past.

	
alpha

	An approximate (two-sided)(1 − α) prediction interval is calculated.

	
baseline

	How many time points to use for calculating the baseline.

	
min_sigma

	If minSigma is higher than 0, the quantity zAlpha * minSigma is then the alerting threshold if the baseline is zero.

References

	1

	Fricker, R.D., Hegler, B.L, and Dunfee, D.A. (2008). Comparing syndromic surveillance detection
methods: EARS versus a CUSUM-based methodology, 27:3407-3429, Statistics in medicine.

	2

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi: 10.18637/jss.v070.i10

	
class epysurv.models.timepoint.ears.EarsC2(alpha: float = 0.001, baseline: int = 7, min_sigma: float = 0)

	Bases: epysurv.models.timepoint.ears._EarsBase

Computes a threshold for the number of counts based on values from the recent past.

This is then compared to the observed number of counts. If the observation is above
a specific quantile of the prediction interval, then an alarm is raised.
This method is especially useful for data without many
historic values, since it only needs counts from the recent past.

	
alpha

	An approximate (two-sided)(1 − α) prediction interval is calculated.

	
baseline

	How many time points to use for calculating the baseline.

	
min_sigma

	If minSigma is higher than 0, zAlpha * minSigma is then the alerting threshold if the baseline is zero.

References

	1

	Fricker, R.D., Hegler, B.L, and Dunfee, D.A. (2008). Comparing syndromic surveillance detection
methods: EARS versus a CUSUM-based methodology, 27:3407-3429, Statistics in medicine.

	2

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi: 10.18637/jss.v070.i10

	
class epysurv.models.timepoint.ears.EarsC3(alpha: float = 0.001, baseline: int = 7, min_sigma: float = 0)

	Bases: epysurv.models.timepoint.ears._EarsBase

The EarsC3 model.

Computes a threshold for the number of counts based on values from the recent past. This is then
compared to the observed number of counts. If the observation is above a specific quantile of the
prediction interval, then an alarm is raised. This method is especially useful for data without many
historic values, since it only needs counts from the recent past.

	
alpha

	An approximate (two-sided)(1 − α) prediction interval is calculated.

	
baseline

	How many time points to use for calculating the baseline.

References

	1

	Fricker, R.D., Hegler, B.L, and Dunfee, D.A. (2008). Comparing syndromic surveillance detection
methods: EARS versus a CUSUM-based methodology, 27:3407-3429, Statistics in medicine.

	2

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi: 10.18637/jss.v070.i10

epysurv.models.timepoint.farrington module

	
class epysurv.models.timepoint.farrington.Farrington(years_back: int = 3, window_half_width: int = 3, reweight: bool = True, alpha: float = 0.01, trend: bool = True, past_period_cutoff: int = 4, min_cases_in_past_periods: int = 5, power_transform: str = '2/3')

	Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

The Farrington algorithm.

For each time point uses a GLM to predict the number of counts according
to the procedure by Farrington et al. (1996).
This is then compared to the observed number of counts. If the observation is above a specific
quantile of the prediction interval, then an alarm is raised.

	
years_back

	How many years back in time to include when forming the base counts.

	
window_half_width

	Number of weeks to include before and after the current week in each year.

	
reweight

	Boolean specifying whether to perform reweighting step.

	
alpha

	An approximate (two-sided) (1 − α) prediction interval is calculated.

	
trend

	Boolean indicating whether a trend should be included and kept in case the conditions
in the Farrington et. al. paper are met (see the results). If false then no trend is fit.

	
past_period_cutoff

	Periods considered for suppression of low case numbers.

	
min_cases_in_past_periods

	The minimal number of cases in past periods such that an outbreak is considered.

	
power_transform

	Power transformation to apply to the data if the threshold is to be computed with the method
described in Farrington et al. (1996). Use either
- “2/3” for skewness correction (Default)
- “1/2” for variance stabilizing transformation
- “none” for no transformation.

References

	1

	Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996): A statistical algorithm for
the early detection of outbreaks of infectious disease. J. R. Statist. Soc. A, 159, 547-563.

	
class epysurv.models.timepoint.farrington.FarringtonFlexible(years_back: int = 3, window_half_width: int = 3, reweight: bool = True, weights_threshold: float = 2.58, alpha: float = 0.01, trend: bool = True, trend_threshold: float = 0.05, past_period_cutoff: int = 4, min_cases_in_past_periods: int = 5, power_transform: str = '2/3', past_weeks_not_included: int = 26, threshold_method: str = 'delta')

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The extended Farrington algorithm.

For each time point uses
a Poisson GLM with overdispersion to predict an upper bound on the number of counts according
to the procedure by Farrington et al. (1996) and by Noufaily et al. (2012). This bound is then
compared to the observed number of counts. If the observation is above the bound, then an alarm is
raised.

	
years_back

	How many years back in time to include when forming the base counts.

	
window_half_width

	Number of weeks to include before and after the current week in each year.

	
reweight

	Boolean specifying whether to perform reweighting step.

	
weights_threshold

	Defines the threshold for reweighting past outbreaks using the Anscombe residuals (1 in the original method, 2.58 advised in the improved method).

	
alpha

	An approximate (one-sided) (1 − α) · 100% prediction interval is calculated
unlike the original method where it was a two-sided interval.
The upper limit of this interval i.e. the (1 − α) · 100% quantile serves as an upperbound.

	
trend

	Boolean indicating whether a trend should be included and kept in case
the conditions in the Farrington et. al. paper are met (see the results).
If false then NO trend is fit.

	
trend_threshold

	Threshold for deciding whether to keep trend in the model (0.05 in the original method, 1 advised in the improved method).

	
past_period_cutoff

	Periods considered for suppression of low case numbers.

	
min_cases_in_past_periods

	The minimal number of cases in past periods such that an outbreak is considered.
power_transform
Power transformation to apply to the data if the threshold is to be computed with the method
described in Farrington et al. (1996). Use either
- “2/3” for skewness correction (Default)
- “1/2” for variance stabilizing transformation
- “none” for no transformation.

	
past_weeks_not_included

	Number of past weeks to ignore in the calculation.

	
threshold_method

	Method to be used to derive the upperbound. Options are
- “delta” for the method described in Farrington et al. (1996)
- “Noufaily” for the method described in Noufaily et al. (2012)
- “muan” for the method extended from Noufaily et al. (2012)

References

	1

	Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996): A statistical algorithm for
the early detection of outbreaks of infectious disease. J. R. Statist. Soc. A, 159, 547-563.

	2

	Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An
improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine,
32 (7), 1206-1222.

	3

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi: 10.18637/jss.v070.i10

epysurv.models.timepoint.glr module

Count data regression charts for the monitoring of surveillance time series.

Method as proposed by Höhle and Paul (2008).
The implementation is described in Salmon et al. (2016).

	
class epysurv.models.timepoint.glr.GLRNegativeBinomial(alpha: float = 0, glr_test_threshold: int = 5, m: int = -1, change: str = 'intercept', direction: Union[Tuple[str, str], Tuple[str]] = ('inc', 'dec'), upperbound_statistic: str = 'cases', x_max: float = 10000.0)

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Generalized likelihood ratio algorithm using negative binomial distribution.

	
alpha

	The (known) dispersion parameter of the negative binomial distribution,
i.e. the parametrization of the negative binomial is such that the variance
is mean + alpha ∗ mean2. Note: This parametrization is the inverse of
the shape parametrization used in R – for example in dnbinom and glr.nb.
Hence, if alpha=0 then the negative binomial distribution boils down to
the Poisson distribution and a call of algo.glrnb is equivalent to a call to
algo.glrpois. If alpha=NULL the parameter is calculated as part of the
in-control estimation. However, the parameter is estimated only once from
the first fit. Subsequent fittings are only for the parameters of the linear
predictor with alpha fixed.

	
glr_test_threshold

	Threshold in the GLR test, i.e. cγ.

	
m

	Number of time instances back in time in the window-limited approach, i.e. the last value considered is max(1, n − m).
To always look back until the first observation use -1.

	
change

	A string specifying the type of the alternative. The two choices are “intercept” and “epi”.

	
direction

	Specifying the direction of testing in GLR scheme.
- (“inc”,) only increases in x are considered in the GLR-statistic
- (“dec”,) only decreases are regarded
- (“inc”, “dec”) both increases and decreases are regarded.

	
upperbound_statistic

	A string specifying the type of upperbound-statistic that is returned.
- “cases” for the number of cases that would have been necessary to produce an alarm
- “value” for the GLR-statistic

	
x_max

	Maximum value to try for x to see if this is the upperbound number of cases before sounding an alarm (Default: 1e4).
This only applies only when upperbound_statistic == "cases".

References

	1

	Höhle, M. and Paul, M. (2008): Count data regression charts for the monitoring of surveillance time
series. Computational Statistics and Data Analysis, 52 (9), 4357-4368.

	2

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35.
doi: 10.18637/jss.v070.i10

	
class epysurv.models.timepoint.glr.GLRPoisson(glr_test_threshold: int = 5, m: int = -1, change: str = 'intercept', direction: Union[Tuple[str, str], Tuple[str]] = ('inc', 'dec'), upperbound_statistic: str = 'cases')

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Generalized likelihood ratio algorithm using Poisson distribution.

	
glr_test_threshold

	Threshold in the GLR test, i.e. cγ.

	
m

	Number of time instances back in time in the window-limited approach, i.e. the last value considered is max(1, n − m).
To always look back until the first observation use -1.

	
change

	A string specifying the type of the alternative. The two choices are “intercept” and “epi”.

	
direction

	Specifying the direction of testing in GLR scheme.
- (“inc”,) only increases in x are considered in the GLR-statistic
- (“dec”,) only decreases are regarded
- (“inc”, “dec”) both increases and decreases are regarded.

	
upperbound_statistic

	a string specifying the type of upperbound-statistic that is returned.
With “cases” the number of cases that would have been necessary
to produce an alarm or with “value” the GLR-statistic is computed.

References

	1

	Höhle, M. and Paul, M. (2008): Count data regression charts for the monitoring of surveillance time
series. Computational Statistics and Data Analysis, 52 (9), 4357-4368.

	2

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35.
doi: 10.18637/jss.v070.i10

	
change = 'intercept'

	a string specifying the type of the alternative. Currently the two choices are intercept and epi. See the SFB Discussion Paper 500 for details

	
direction = ('inc', 'dec')

	Specifying the direction of testing in GLR scheme. With “inc” only increases in x are considered in the GLR-statistic, with “dec” decreases are regarded.

	
glr_test_threshold = 5

	threshold in the GLR test, i.e. cγ.

	
m = -1

	number of time instances back in time in the window-limited approach, i.e. the last value considered is max 1, n − M. To always look back until the first observation use M=-1.

	
upperbound_statistic = 'cases'

	a string specifying the type of upperbound-statistic that is returned. With “cases” the number of cases that would have been necessary to produce an alarm or with “value” the GLR-statistic is computed (see below)

epysurv.models.timepoint.hmm module

	
class epysurv.models.timepoint.hmm.HMM(n_observations: int = -1, n_hidden_states: int = 2, trend: bool = True, n_harmonics: int = 1, equal_covariate_effects: bool = False)

	Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

Hidden Markov model for outbreak detection.

	
n_observations

	number of observations back in time to use for fitting the HMM (including
the current observation). Reasonable values are a multiple of observations per year,
the default is -1, which means to use all possible values - for long
series this might take very long time!

	
n_hidden_states

	number of hidden states in the HMM – the typical choice is 2. The
initial rates are set such that the noStates’th state is the one having the
highest rate. In other words: this state is considered the outbreak state.

	
trend

	The two choices are “intercept” and “epi”.

	
n_harmonics

	Number of harmonic waves to include in the linear predictor.

	
equal_covariate_effects

	If set then all covariate effects parameters are equal for the states.

References

	1

	
	Le Strat and F. Carrat, Monitoring Epidemiologic Surveillance Data using Hidden Markov Models (1999), Statistics in Medicine, 18, 3463–3478

	2

	I.L. MacDonald and W. Zucchini, Hidden Markov and Other Models for Discrete-valued Time
Series, (1997), Chapman & Hall, Monographs on Statistics and applied Probability 70

epysurv.models.timepoint.outbreak_p module

	
class epysurv.models.timepoint.outbreak_p.OutbreakP(threshold: int = 100, upperbound_statistic: str = 'cases', max_upperbound_cases: int = 100000)

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The OutbreakP model.

	
threshold

	The threshold value. Once the outbreak statistic is above this threshold an alarm is sounded.

	
upperbound_statistic

	A string specifying the type of upperbound-statistic that is returned. With
“cases” the number of cases that would have been necessary to produce
an alarm (NNBA) or with “value” the outbreakP-statistic is computed.

	
max_upperbound_cases

	Upperbound when numerically searching for NNBA. Default is 1e5.

References

	1

	Frisén, M., Andersson and Schiöler, L., (2009), Robust outbreak surveillance of epidemics in Sweden, Statistics in Medicine, 28(3):476-493.

	2

	Frisén, M. and Andersson, E., (2009) Semiparametric Surveillance of Monotonic Changes, Sequential Analysis 28(4):434-454.

epysurv.models.timepoint.rki module

	
class epysurv.models.timepoint.rki.RKI(years_back: int = 0, window_half_width: int = 6, include_recent_year: bool = True)

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The old algorithm from the Robert Koch Institute.

	
years_back

	How many years back in time to include when forming the base counts.

	
window_half_width

	Number of weeks to include before and after the current week in each year.

	
include_recent_year

	Is a boolean to decide if the year of timePoint also contributes w reference values.

Module contents

	
class epysurv.models.timepoint.Bayes(years_back: int = 0, window_half_width: int = 6, include_recent_year: bool = True, alpha: float = 0.05)

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Evaluation of timepoints with the Bayes subsystem.

	
years_back

	How many years back in time to include when forming the base counts.

	
window_half_width

	Number of weeks to include before and after the current week in each year.

	
include_recent_year

	is a boolean to decide if the year of timePoint also contributes w reference values.

	
alpha

	The parameter alpha is the (1 − α)-quantile to use in order to calculate the upper threshold. As default b, w, actY are set for the Bayes 1 system with alpha=0.05.

References

	1

	Riebler, A. (2004), Empirischer Vergleich von statistischen Methoden zur Ausbruchserkennung bei
Surveillance Daten, Bachelor’s thesis

	2

	Höhle, M., & Riebler, A. (2005). Höhle, Riebler: The R-Package “surveillance.” Sonderforschungsbereich (Vol. 386). Retrieved from https://epub.ub.uni-muenchen.de/1791/1/paper_422.pdf

	
class epysurv.models.timepoint.Boda(trend: bool = False, season: bool = False, prior: str = 'iid', alpha: float = 0.05, mc_munu: int = 100, mc_y: int = 10, quantile_method: str = 'MM')

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The Boda model.

	
trend

	Boolean indicating whether a linear trend term should be included in the model for the expectation the log-scale

	
season

	Boolean to indicate whether a cyclic spline should be included.

	
prior

	Either of “iid”, “rw1” or “rw2”.

	
alpha

	The threshold for declaring an observed count as an aberration is the (1 − α) · 100% quantile of the predictive posterior.

	
mc_munu

	

	
mc_y

	Number of samples of y to generate for each pair of the mean and size parameter. A total of mc.munu × mc.y samples are generated.

	
sampling_method

	Should one sample from the parameters joint distribution (joint) or from their respective marginal posterior distribution (marginals)

	
quantile_method

	Either of “MC” or “MM”. Indicates how to compute the quantile
based on the posterior distribution (no matter the inference method):
either by sampling mc.munu values from the posterior distribution of the
parameters and then for each sampled parameters vector sampling mc.y response
values so that one gets a vector of response values based on which
one computes an empirical quantile (MC method, as explained in Manitz
and Höhle 2013); or by sampling mc_munu from the posterior distribution
of the parameters and then compute the quantile of the mixture distribution
using bisectioning, which is faster.

	
class epysurv.models.timepoint.CDC(years_back: int = 5, window_half_width: int = 1, alpha: float = 0.001)

	Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

The CDC model.

	
years_back

	How many years back in time to include when forming the base counts.

	
window_half_width

	Number of weeks to include before and after the current week in each year.

	
alpha

	An approximate (two-sided)(1 − α) prediction interval is calculated.

References

	1

	Stroup, D., G. Williamson, J. Herndon, and J. Karon (1989). Detection of aberrations in the occurence of
notifiable diseases surveillance data. Statistics in Medicine 8, 323-329.

	2

	Farrington, C. and N. Andrews (2003). Monitoring the Health of Populations, Chapter Outbreak
Detection: Application to Infectious Disease Surveillance, pp. 203-231. Oxford University Press.

	
class epysurv.models.timepoint.Cusum(reference_value: float = 1.04, decision_boundary: float = 2.26, expected_numbers_method: str = 'mean', transform: str = 'standard', negbin_alpha: float = 0.1)

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The Cusum model.

	
reference_value

	

	
decision_boundary

	

	
expected_numbers_method

	How to determine the expected number of cases – the following arguments are possible: {“glm”, “mean”}.

	mean
	Use the mean of all data points passed to fit.

	glm
	Fit a glm to the data ponts passed to fit.

	
transform

	One of the following transformations (warning: Anscombe and NegBin transformations are experimental)
- standard standardized variables z1 (based on asymptotic normality) - This is the default.
- rossi standardized variables z3 as proposed by Rossi
- anscombe anscombe residuals – experimental
- anscombe2nd anscombe residuals as in Pierce and Schafer (1986) based on 2nd order approximation of E(X) – experimental
- pearsonNegBin compute Pearson residuals for NegBin – experimental
- anscombeNegBin anscombe residuals for NegBin – experimental
- "none" no transformation

	
negbin_alpha

	Parameter of the negative binomial distribution, such that the variance is \(m + α \cdot m2\).

References

	1

	
	Rossi, L. Lampugnani and M. Marchi (1999), An approximate CUSUM procedure for surveillance of health events, Statistics in Medicine, 18, 2111–2122

	2

	D. A. Pierce and D. W. Schafer (1986), Residuals in Generalized Linear Models, Journal of the
American Statistical Association, 81, 977–986

	
class epysurv.models.timepoint.EarsC1(alpha: float = 0.001, baseline: int = 7, min_sigma: float = 0)

	Bases: epysurv.models.timepoint.ears._EarsBase

Computes a threshold for the number of counts based on values from the recent past.

This is then compared to the observed number of counts. If the observation is above
a specific quantile of the prediction interval, then an alarm is raised.
This method is especially useful for data without many
historic values, since it only needs counts from the recent past.

	
alpha

	An approximate (two-sided)(1 − α) prediction interval is calculated.

	
baseline

	How many time points to use for calculating the baseline.

	
min_sigma

	If minSigma is higher than 0, the quantity zAlpha * minSigma is then the alerting threshold if the baseline is zero.

References

	1

	Fricker, R.D., Hegler, B.L, and Dunfee, D.A. (2008). Comparing syndromic surveillance detection
methods: EARS versus a CUSUM-based methodology, 27:3407-3429, Statistics in medicine.

	2

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi: 10.18637/jss.v070.i10

	
class epysurv.models.timepoint.EarsC2(alpha: float = 0.001, baseline: int = 7, min_sigma: float = 0)

	Bases: epysurv.models.timepoint.ears._EarsBase

Computes a threshold for the number of counts based on values from the recent past.

This is then compared to the observed number of counts. If the observation is above
a specific quantile of the prediction interval, then an alarm is raised.
This method is especially useful for data without many
historic values, since it only needs counts from the recent past.

	
alpha

	An approximate (two-sided)(1 − α) prediction interval is calculated.

	
baseline

	How many time points to use for calculating the baseline.

	
min_sigma

	If minSigma is higher than 0, zAlpha * minSigma is then the alerting threshold if the baseline is zero.

References

	1

	Fricker, R.D., Hegler, B.L, and Dunfee, D.A. (2008). Comparing syndromic surveillance detection
methods: EARS versus a CUSUM-based methodology, 27:3407-3429, Statistics in medicine.

	2

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi: 10.18637/jss.v070.i10

	
class epysurv.models.timepoint.EarsC3(alpha: float = 0.001, baseline: int = 7, min_sigma: float = 0)

	Bases: epysurv.models.timepoint.ears._EarsBase

The EarsC3 model.

Computes a threshold for the number of counts based on values from the recent past. This is then
compared to the observed number of counts. If the observation is above a specific quantile of the
prediction interval, then an alarm is raised. This method is especially useful for data without many
historic values, since it only needs counts from the recent past.

	
alpha

	An approximate (two-sided)(1 − α) prediction interval is calculated.

	
baseline

	How many time points to use for calculating the baseline.

References

	1

	Fricker, R.D., Hegler, B.L, and Dunfee, D.A. (2008). Comparing syndromic surveillance detection
methods: EARS versus a CUSUM-based methodology, 27:3407-3429, Statistics in medicine.

	2

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi: 10.18637/jss.v070.i10

	
class epysurv.models.timepoint.FarringtonFlexible(years_back: int = 3, window_half_width: int = 3, reweight: bool = True, weights_threshold: float = 2.58, alpha: float = 0.01, trend: bool = True, trend_threshold: float = 0.05, past_period_cutoff: int = 4, min_cases_in_past_periods: int = 5, power_transform: str = '2/3', past_weeks_not_included: int = 26, threshold_method: str = 'delta')

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The extended Farrington algorithm.

For each time point uses
a Poisson GLM with overdispersion to predict an upper bound on the number of counts according
to the procedure by Farrington et al. (1996) and by Noufaily et al. (2012). This bound is then
compared to the observed number of counts. If the observation is above the bound, then an alarm is
raised.

	
years_back

	How many years back in time to include when forming the base counts.

	
window_half_width

	Number of weeks to include before and after the current week in each year.

	
reweight

	Boolean specifying whether to perform reweighting step.

	
weights_threshold

	Defines the threshold for reweighting past outbreaks using the Anscombe residuals (1 in the original method, 2.58 advised in the improved method).

	
alpha

	An approximate (one-sided) (1 − α) · 100% prediction interval is calculated
unlike the original method where it was a two-sided interval.
The upper limit of this interval i.e. the (1 − α) · 100% quantile serves as an upperbound.

	
trend

	Boolean indicating whether a trend should be included and kept in case
the conditions in the Farrington et. al. paper are met (see the results).
If false then NO trend is fit.

	
trend_threshold

	Threshold for deciding whether to keep trend in the model (0.05 in the original method, 1 advised in the improved method).

	
past_period_cutoff

	Periods considered for suppression of low case numbers.

	
min_cases_in_past_periods

	The minimal number of cases in past periods such that an outbreak is considered.
power_transform
Power transformation to apply to the data if the threshold is to be computed with the method
described in Farrington et al. (1996). Use either
- “2/3” for skewness correction (Default)
- “1/2” for variance stabilizing transformation
- “none” for no transformation.

	
past_weeks_not_included

	Number of past weeks to ignore in the calculation.

	
threshold_method

	Method to be used to derive the upperbound. Options are
- “delta” for the method described in Farrington et al. (1996)
- “Noufaily” for the method described in Noufaily et al. (2012)
- “muan” for the method extended from Noufaily et al. (2012)

References

	1

	Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996): A statistical algorithm for
the early detection of outbreaks of infectious disease. J. R. Statist. Soc. A, 159, 547-563.

	2

	Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An
improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine,
32 (7), 1206-1222.

	3

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35. doi: 10.18637/jss.v070.i10

	
class epysurv.models.timepoint.Farrington(years_back: int = 3, window_half_width: int = 3, reweight: bool = True, alpha: float = 0.01, trend: bool = True, past_period_cutoff: int = 4, min_cases_in_past_periods: int = 5, power_transform: str = '2/3')

	Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

The Farrington algorithm.

For each time point uses a GLM to predict the number of counts according
to the procedure by Farrington et al. (1996).
This is then compared to the observed number of counts. If the observation is above a specific
quantile of the prediction interval, then an alarm is raised.

	
years_back

	How many years back in time to include when forming the base counts.

	
window_half_width

	Number of weeks to include before and after the current week in each year.

	
reweight

	Boolean specifying whether to perform reweighting step.

	
alpha

	An approximate (two-sided) (1 − α) prediction interval is calculated.

	
trend

	Boolean indicating whether a trend should be included and kept in case the conditions
in the Farrington et. al. paper are met (see the results). If false then no trend is fit.

	
past_period_cutoff

	Periods considered for suppression of low case numbers.

	
min_cases_in_past_periods

	The minimal number of cases in past periods such that an outbreak is considered.

	
power_transform

	Power transformation to apply to the data if the threshold is to be computed with the method
described in Farrington et al. (1996). Use either
- “2/3” for skewness correction (Default)
- “1/2” for variance stabilizing transformation
- “none” for no transformation.

References

	1

	Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996): A statistical algorithm for
the early detection of outbreaks of infectious disease. J. R. Statist. Soc. A, 159, 547-563.

	
class epysurv.models.timepoint.GLRNegativeBinomial(alpha: float = 0, glr_test_threshold: int = 5, m: int = -1, change: str = 'intercept', direction: Union[Tuple[str, str], Tuple[str]] = ('inc', 'dec'), upperbound_statistic: str = 'cases', x_max: float = 10000.0)

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Generalized likelihood ratio algorithm using negative binomial distribution.

	
alpha

	The (known) dispersion parameter of the negative binomial distribution,
i.e. the parametrization of the negative binomial is such that the variance
is mean + alpha ∗ mean2. Note: This parametrization is the inverse of
the shape parametrization used in R – for example in dnbinom and glr.nb.
Hence, if alpha=0 then the negative binomial distribution boils down to
the Poisson distribution and a call of algo.glrnb is equivalent to a call to
algo.glrpois. If alpha=NULL the parameter is calculated as part of the
in-control estimation. However, the parameter is estimated only once from
the first fit. Subsequent fittings are only for the parameters of the linear
predictor with alpha fixed.

	
glr_test_threshold

	Threshold in the GLR test, i.e. cγ.

	
m

	Number of time instances back in time in the window-limited approach, i.e. the last value considered is max(1, n − m).
To always look back until the first observation use -1.

	
change

	A string specifying the type of the alternative. The two choices are “intercept” and “epi”.

	
direction

	Specifying the direction of testing in GLR scheme.
- (“inc”,) only increases in x are considered in the GLR-statistic
- (“dec”,) only decreases are regarded
- (“inc”, “dec”) both increases and decreases are regarded.

	
upperbound_statistic

	A string specifying the type of upperbound-statistic that is returned.
- “cases” for the number of cases that would have been necessary to produce an alarm
- “value” for the GLR-statistic

	
x_max

	Maximum value to try for x to see if this is the upperbound number of cases before sounding an alarm (Default: 1e4).
This only applies only when upperbound_statistic == "cases".

References

	1

	Höhle, M. and Paul, M. (2008): Count data regression charts for the monitoring of surveillance time
series. Computational Statistics and Data Analysis, 52 (9), 4357-4368.

	2

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35.
doi: 10.18637/jss.v070.i10

	
class epysurv.models.timepoint.GLRPoisson(glr_test_threshold: int = 5, m: int = -1, change: str = 'intercept', direction: Union[Tuple[str, str], Tuple[str]] = ('inc', 'dec'), upperbound_statistic: str = 'cases')

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

Generalized likelihood ratio algorithm using Poisson distribution.

	
glr_test_threshold

	Threshold in the GLR test, i.e. cγ.

	
m

	Number of time instances back in time in the window-limited approach, i.e. the last value considered is max(1, n − m).
To always look back until the first observation use -1.

	
change

	A string specifying the type of the alternative. The two choices are “intercept” and “epi”.

	
direction

	Specifying the direction of testing in GLR scheme.
- (“inc”,) only increases in x are considered in the GLR-statistic
- (“dec”,) only decreases are regarded
- (“inc”, “dec”) both increases and decreases are regarded.

	
upperbound_statistic

	a string specifying the type of upperbound-statistic that is returned.
With “cases” the number of cases that would have been necessary
to produce an alarm or with “value” the GLR-statistic is computed.

References

	1

	Höhle, M. and Paul, M. (2008): Count data regression charts for the monitoring of surveillance time
series. Computational Statistics and Data Analysis, 52 (9), 4357-4368.

	2

	Salmon, M., Schumacher, D. and Höhle, M. (2016): Monitoring count time series in R: Aberration
detection in public health surveillance. Journal of Statistical Software, 70 (10), 1-35.
doi: 10.18637/jss.v070.i10

	
change = 'intercept'

	a string specifying the type of the alternative. Currently the two choices are intercept and epi. See the SFB Discussion Paper 500 for details

	
direction = ('inc', 'dec')

	Specifying the direction of testing in GLR scheme. With “inc” only increases in x are considered in the GLR-statistic, with “dec” decreases are regarded.

	
glr_test_threshold = 5

	threshold in the GLR test, i.e. cγ.

	
m = -1

	number of time instances back in time in the window-limited approach, i.e. the last value considered is max 1, n − M. To always look back until the first observation use M=-1.

	
upperbound_statistic = 'cases'

	a string specifying the type of upperbound-statistic that is returned. With “cases” the number of cases that would have been necessary to produce an alarm or with “value” the GLR-statistic is computed (see below)

	
class epysurv.models.timepoint.HMM(n_observations: int = -1, n_hidden_states: int = 2, trend: bool = True, n_harmonics: int = 1, equal_covariate_effects: bool = False)

	Bases: epysurv.models.timepoint._base.DisProgBasedAlgorithm

Hidden Markov model for outbreak detection.

	
n_observations

	number of observations back in time to use for fitting the HMM (including
the current observation). Reasonable values are a multiple of observations per year,
the default is -1, which means to use all possible values - for long
series this might take very long time!

	
n_hidden_states

	number of hidden states in the HMM – the typical choice is 2. The
initial rates are set such that the noStates’th state is the one having the
highest rate. In other words: this state is considered the outbreak state.

	
trend

	The two choices are “intercept” and “epi”.

	
n_harmonics

	Number of harmonic waves to include in the linear predictor.

	
equal_covariate_effects

	If set then all covariate effects parameters are equal for the states.

References

	1

	
	Le Strat and F. Carrat, Monitoring Epidemiologic Surveillance Data using Hidden Markov Models (1999), Statistics in Medicine, 18, 3463–3478

	2

	I.L. MacDonald and W. Zucchini, Hidden Markov and Other Models for Discrete-valued Time
Series, (1997), Chapman & Hall, Monographs on Statistics and applied Probability 70

	
class epysurv.models.timepoint.OutbreakP(threshold: int = 100, upperbound_statistic: str = 'cases', max_upperbound_cases: int = 100000)

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The OutbreakP model.

	
threshold

	The threshold value. Once the outbreak statistic is above this threshold an alarm is sounded.

	
upperbound_statistic

	A string specifying the type of upperbound-statistic that is returned. With
“cases” the number of cases that would have been necessary to produce
an alarm (NNBA) or with “value” the outbreakP-statistic is computed.

	
max_upperbound_cases

	Upperbound when numerically searching for NNBA. Default is 1e5.

References

	1

	Frisén, M., Andersson and Schiöler, L., (2009), Robust outbreak surveillance of epidemics in Sweden, Statistics in Medicine, 28(3):476-493.

	2

	Frisén, M. and Andersson, E., (2009) Semiparametric Surveillance of Monotonic Changes, Sequential Analysis 28(4):434-454.

	
class epysurv.models.timepoint.RKI(years_back: int = 0, window_half_width: int = 6, include_recent_year: bool = True)

	Bases: epysurv.models.timepoint._base.STSBasedAlgorithm

The old algorithm from the Robert Koch Institute.

	
years_back

	How many years back in time to include when forming the base counts.

	
window_half_width

	Number of weeks to include before and after the current week in each year.

	
include_recent_year

	Is a boolean to decide if the year of timePoint also contributes w reference values.

epysurv.models.timeseries package

Submodules

epysurv.models.timeseries.convert_interface module

Put a timeseries interface in front of all timepoint algorithms.

	
class epysurv.models.timeseries.convert_interface.Bayes(years_back: int = 0, window_half_width: int = 6, include_recent_year: bool = True, alpha: float = 0.05)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.bayes.Bayes

	
class epysurv.models.timeseries.convert_interface.Boda(trend: bool = False, season: bool = False, prior: str = 'iid', alpha: float = 0.05, mc_munu: int = 100, mc_y: int = 10, quantile_method: str = 'MM')

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.boda.Boda

	
class epysurv.models.timeseries.convert_interface.CDC(years_back: int = 5, window_half_width: int = 1, alpha: float = 0.001)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.cdc.CDC

	
class epysurv.models.timeseries.convert_interface.Cusum(reference_value: float = 1.04, decision_boundary: float = 2.26, expected_numbers_method: str = 'mean', transform: str = 'standard', negbin_alpha: float = 0.1)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.cusum.Cusum

	
class epysurv.models.timeseries.convert_interface.EarsC1(alpha: float = 0.001, baseline: int = 7, min_sigma: float = 0)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.ears.EarsC1

	
class epysurv.models.timeseries.convert_interface.EarsC2(alpha: float = 0.001, baseline: int = 7, min_sigma: float = 0)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.ears.EarsC2

	
class epysurv.models.timeseries.convert_interface.Farrington(years_back: int = 3, window_half_width: int = 3, reweight: bool = True, alpha: float = 0.01, trend: bool = True, past_period_cutoff: int = 4, min_cases_in_past_periods: int = 5, power_transform: str = '2/3')

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.farrington.Farrington

	
class epysurv.models.timeseries.convert_interface.FarringtonFlexible(years_back: int = 3, window_half_width: int = 3, reweight: bool = True, weights_threshold: float = 2.58, alpha: float = 0.01, trend: bool = True, trend_threshold: float = 0.05, past_period_cutoff: int = 4, min_cases_in_past_periods: int = 5, power_transform: str = '2/3', past_weeks_not_included: int = 26, threshold_method: str = 'delta')

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.farrington.FarringtonFlexible

	
class epysurv.models.timeseries.convert_interface.GLRNegativeBinomial(alpha: float = 0, glr_test_threshold: int = 5, m: int = -1, change: str = 'intercept', direction: Union[Tuple[str, str], Tuple[str]] = ('inc', 'dec'), upperbound_statistic: str = 'cases', x_max: float = 10000.0)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.glr.GLRNegativeBinomial

	
class epysurv.models.timeseries.convert_interface.GLRPoisson(glr_test_threshold: int = 5, m: int = -1, change: str = 'intercept', direction: Union[Tuple[str, str], Tuple[str]] = ('inc', 'dec'), upperbound_statistic: str = 'cases')

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.glr.GLRPoisson

	
class epysurv.models.timeseries.convert_interface.HMM(n_observations: int = -1, n_hidden_states: int = 2, trend: bool = True, n_harmonics: int = 1, equal_covariate_effects: bool = False)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.hmm.HMM

	
class epysurv.models.timeseries.convert_interface.OutbreakP(threshold: int = 100, upperbound_statistic: str = 'cases', max_upperbound_cases: int = 100000)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.outbreak_p.OutbreakP

	
class epysurv.models.timeseries.convert_interface.RKI(years_back: int = 0, window_half_width: int = 6, include_recent_year: bool = True)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.rki.RKI

Module contents

	
class epysurv.models.timeseries.Bayes(years_back: int = 0, window_half_width: int = 6, include_recent_year: bool = True, alpha: float = 0.05)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.bayes.Bayes

	
class epysurv.models.timeseries.Boda(trend: bool = False, season: bool = False, prior: str = 'iid', alpha: float = 0.05, mc_munu: int = 100, mc_y: int = 10, quantile_method: str = 'MM')

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.boda.Boda

	
class epysurv.models.timeseries.CDC(years_back: int = 5, window_half_width: int = 1, alpha: float = 0.001)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.cdc.CDC

	
class epysurv.models.timeseries.Cusum(reference_value: float = 1.04, decision_boundary: float = 2.26, expected_numbers_method: str = 'mean', transform: str = 'standard', negbin_alpha: float = 0.1)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.cusum.Cusum

	
class epysurv.models.timeseries.EarsC1(alpha: float = 0.001, baseline: int = 7, min_sigma: float = 0)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.ears.EarsC1

	
class epysurv.models.timeseries.EarsC2(alpha: float = 0.001, baseline: int = 7, min_sigma: float = 0)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.ears.EarsC2

	
class epysurv.models.timeseries.FarringtonFlexible(years_back: int = 3, window_half_width: int = 3, reweight: bool = True, weights_threshold: float = 2.58, alpha: float = 0.01, trend: bool = True, trend_threshold: float = 0.05, past_period_cutoff: int = 4, min_cases_in_past_periods: int = 5, power_transform: str = '2/3', past_weeks_not_included: int = 26, threshold_method: str = 'delta')

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.farrington.FarringtonFlexible

	
class epysurv.models.timeseries.Farrington(years_back: int = 3, window_half_width: int = 3, reweight: bool = True, alpha: float = 0.01, trend: bool = True, past_period_cutoff: int = 4, min_cases_in_past_periods: int = 5, power_transform: str = '2/3')

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.farrington.Farrington

	
class epysurv.models.timeseries.GLRNegativeBinomial(alpha: float = 0, glr_test_threshold: int = 5, m: int = -1, change: str = 'intercept', direction: Union[Tuple[str, str], Tuple[str]] = ('inc', 'dec'), upperbound_statistic: str = 'cases', x_max: float = 10000.0)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.glr.GLRNegativeBinomial

	
class epysurv.models.timeseries.GLRPoisson(glr_test_threshold: int = 5, m: int = -1, change: str = 'intercept', direction: Union[Tuple[str, str], Tuple[str]] = ('inc', 'dec'), upperbound_statistic: str = 'cases')

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.glr.GLRPoisson

	
class epysurv.models.timeseries.HMM(n_observations: int = -1, n_hidden_states: int = 2, trend: bool = True, n_harmonics: int = 1, equal_covariate_effects: bool = False)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.hmm.HMM

	
class epysurv.models.timeseries.OutbreakP(threshold: int = 100, upperbound_statistic: str = 'cases', max_upperbound_cases: int = 100000)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.outbreak_p.OutbreakP

	
class epysurv.models.timeseries.RKI(years_back: int = 0, window_half_width: int = 6, include_recent_year: bool = True)

	Bases: epysurv.models.timeseries._base.NonLearningTimeseriesClassificationMixin, epysurv.models.timepoint.rki.RKI

epysurv.simulation package

Submodules

epysurv.simulation.naive_poisson module

	
epysurv.simulation.naive_poisson.get_outbreak_begins(n: int, outbreak_length: int, n_outbreaks: int) → Set[int]

	

	
epysurv.simulation.naive_poisson.simulate_outbreaks(n: int = 104, outbreak_length: int = 5, n_outbreaks: int = 3, mu: float = 1, outbreak_mu: float = 10) → pandas.core.frame.DataFrame

	Simulate outbreaks based on Poisson distribution.

	Parameters

	
	n – Number of weeks.

	outbreak_length – Number of weeks each outbreak is long.

	n_outbreaks – Number of outbreaks.

	mu – Mean for the baseline.

	outbreak_mu – Mean for the outbreaks.

	Returns

	Simulated case counts per week, separated into baseline and outbreak cases.

Module contents

Module for simulating epidemiological data.

	
class epysurv.simulation.PointSource(alpha: float = 1.0, amplitude: float = 1.0, frequency: int = 1, p: float = 0.99, r: float = 0.01, seasonal_move: int = 0, seed: Optional[int] = None, trend: float = 0.0)

	Bases: epysurv.simulation.base.BaseSimulation

Simulation of epidemics which were introduced by point sources.

The basis of this programme is a combination of a Hidden Markov Model
(to get random time points for outbreaks) and a simple model
(compare epysurv.simulation.SeasonalNoise) to simulate the baseline.

	Parameters

	
	amplitude – Amplitude of the sine. Determines the possible range of simulated seasonal cases.

	alpha – Parameter to move along the y-axis (negative values are not allowed) with alpha >= amplitude.

	frequency – Factor in oscillation term. Is multiplied with the annual term \(\omega\) and the current time point.

	p – Probability to get a new outbreak at time \(t\) if there was one at time \(t-1\).

	r – Probability to get no new outbreak at time \(t\) if there was none at time \(t-1\).

	seasonal_move – A term added to time point \(t\) to move the curve along the x-axis.

	seed – Seed for the random number generation.

	trend – Controls the influence of the current week on \(\mu\).

References

http://surveillance.r-forge.r-project.org/

	
simulate(length: int, state_weight: float = 0, state: Optional[Sequence[int]] = None) → pandas.core.frame.DataFrame

	Simulate outbreaks.

	Parameters

	
	length – Number of weeks to model. length is ignored if state is given. In this case, the length of
state is used.

	state – Use a state chain to define the status at this time point (outbreak or not). If not given, a Markov chain is
generated automatically.

	state_weight – Additional weight for an outbreak which influences the distribution parameter mu.

	Returns

	A DataFrame of simulated case counts per week, separated into baseline and outbreak cases.

	
class epysurv.simulation.SeasonalNoiseNegativeBinomial(baseline_frequency: float = 1.5, dispersion: float = 1.0, seasonality_cos: float = 0.2, seasonality_sin: float = -0.4, seasonality_length: int = 1, seed: Optional[int] = None, trend: float = 0.003)

	Bases: epysurv.simulation.base.BaseSimulation

A time series simulation that generates case counts based on a negative binomial model.

The model is described by a mean \(\mu\), variance \(\phi \cdot \mu\), and a linear predictor including
trend and seasonality determined by Fourier terms. \(\mu\) of the model depends on the current week and
is defined as follows:

\(\mu(t) = \exp \left\{ \theta + \beta t + \sum_{j=1}^{m} \left\{ \gamma_{1} \cos (\frac{2\pi j t}{52})
+ \gamma_{2} \sin (\frac{2\pi j t}{52}) \right\} \right\}\)

where \(t\) is the current week, \(m\) the seasonality length, \(\beta\) equals to the trend parameter,
\(\gamma\) is a seasonality parameter, and \(\theta\) is the baseline frequency of the cases.

The simulation is then run using
\(\mu\) and the dispersion parameter \(\phi\) to specify the
negative binomial model we draw case counts from.

	Parameters

	
	baseline_frequency – Baseline frequency of cases.

	dispersion – Regulates the overdispersion compared to the Poisson distribution (\(\phi \cdot \mu\)).

	seasonality_cos – Seasonality parameter to model \(\cos\) of the Fourier term.

	seasonality_sin – seasonality parameter to model \(\sin\) of the Fourier term.

	seasonality_length – Models the annual-wise seasonality. 0 equals to no seasonality, 1 to annual seasonality, 2 to
biannual seasonality and so forth.

	seed – A seed for the random number generation.

	trend – Controls the influence of the current week on \(\mu\).

References

	1

	Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An
improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine,
32 (7), 1206-1222.

	
simulate(length: int) → pandas.core.frame.DataFrame

	Simulate outbreaks.

	length
	Number of weeks to model.

	Returns

	A DataFrame of an endemic time series where each row contains the case counts ot this week.

	
class epysurv.simulation.SeasonalNoisePoisson(alpha: float = 1.0, amplitude: float = 1.0, frequency: int = 1, seasonal_move: int = 0, seed: Optional[int] = None, trend: float = 0.0)

	Bases: epysurv.simulation.base.BaseSimulation

Simulation of an endemic time series based on a Poisson distribution.

The mean of the Poisson distribution is modelled as:

\(\mu(t) = \exp{(A\sin{(frequency \cdot \omega \cdot (t + \phi))}
+ \alpha + \beta \cdot t + K \cdot state)}\)

with \(\omega = \pi / 52\), \(A\) being the amplitude, \(\beta\) the trend parameter, \(t\)
the current week, and \(\theta\) the seasonal move.

	Parameters

	
	amplitude – Amplitude of the sine. Determines the range of simulated cases.

	alpha – Parameter to move simulation along the y-axis (negative values are not allowed) with alpha >= amplitude.

	frequency – Factor in oscillation term. Is multiplied with the annual term \(\omega\) and the current time point.

	seasonal_move – A term added to each time point \(t\) to move the curve along the x-axis.

	seed – Seed for the random number generation.

	trend – Controls the influence of the current week on \(\mu\).

References

http://surveillance.r-forge.r-project.org/

	
simulate(length: int, state_weight: Optional[float] = None, state: Optional[Sequence[int]] = None) → pandas.core.frame.DataFrame

	Simulate outbreaks.

	Parameters

	
	length – Number of weeks to model. length is ignored if state is given. In this case the length of state
is used.

	state – Use a state chain to define the status at this time point (outbreak or not). If not given, a Markov chain is
generated automatically.

	state_weight – Additional weight for an outbreak which influences the distribution parameter \(\mu\).

	Returns

	
	A DataFrame of an endemic time series where each row contains the case counts of this week.

	It also contains the mean case count value based on the underlying sinus model.

epysurv.visualization package

Submodules

epysurv.visualization.model_diagnostics module

	
epysurv.visualization.model_diagnostics.ghozzi_score_plot(prediction_result: pandas.core.frame.DataFrame, filename: str)

	Plots case counts and detector predictions with ghozzi weighting.

	Parameters

	
	prediction_result – DataFrame containing ‘alarm’, ‘county’, ‘pathogen’, ‘n_cases’, ‘n_outbreak_cases’, ‘outbreak’.

	filename – File name to write the plot to.

	
epysurv.visualization.model_diagnostics.plot_confusion_matrix(confusion_matrix: numpy.ndarray, class_names: list, ax: matplotlib.axes._axes.Axes = None) → matplotlib.axes._axes.Axes

	Plots a confusion matrix, as returned by sklearn.metrics.confusion_matrix, as a heatmap.

Based on https://gist.github.com/shaypal5/94c53d765083101efc0240d776a23823

	Parameters

	
	confusion_matrix – The numpy.ndarray object returned from a call to sklearn.metrics.confusion_matrix.
Similarly constructed ndarrays can also be used.

	class_names – An ordered list of class names, in the order they index the given confusion matrix.

	figsize – A 2-long tuple, the first value determining the horizontal size of the ouputted figure,
the second determining the vertical size. Defaults to (10,7).

	Returns

	The resulting confusion matrix figure

	
epysurv.visualization.model_diagnostics.plot_prediction(train_data, test_data, prediction, ax: matplotlib.axes._axes.Axes = None) → matplotlib.axes._axes.Axes

	Plots case counts as step line, with outbreaks and alarms indicated by triangles.

Module contents

Module for visualizing epidemiological data and performance of outbreak detection models.

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 epysurv	

 	
 	
 epysurv.data	

 	
 	
 epysurv.data.disease_loader	

 	
 	
 epysurv.data.filter_combination	

 	
 	
 epysurv.data.salmonella_data	

 	
 	
 epysurv.data.utils	

 	
 	
 epysurv.metrics	

 	
 	
 epysurv.metrics.outbreak_detection	

 	
 	
 epysurv.models	

 	
 	
 epysurv.models.timepoint	

 	
 	
 epysurv.models.timepoint.bayes	

 	
 	
 epysurv.models.timepoint.boda	

 	
 	
 epysurv.models.timepoint.cdc	

 	
 	
 epysurv.models.timepoint.cusum	

 	
 	
 epysurv.models.timepoint.ears	

 	
 	
 epysurv.models.timepoint.farrington	

 	
 	
 epysurv.models.timepoint.glr	

 	
 	
 epysurv.models.timepoint.hmm	

 	
 	
 epysurv.models.timepoint.outbreak_p	

 	
 	
 epysurv.models.timepoint.rki	

 	
 	
 epysurv.models.timeseries	

 	
 	
 epysurv.models.timeseries.convert_interface	

 	
 	
 epysurv.simulation	

 	
 	
 epysurv.simulation.naive_poisson	

 	
 	
 epysurv.visualization	

 	
 	
 epysurv.visualization.model_diagnostics	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | X
 | Y

A

 	
 	alpha (epysurv.models.timepoint.Bayes attribute)

 	(epysurv.models.timepoint.Boda attribute)

 	(epysurv.models.timepoint.CDC attribute)

 	(epysurv.models.timepoint.EarsC1 attribute)

 	(epysurv.models.timepoint.EarsC2 attribute)

 	(epysurv.models.timepoint.EarsC3 attribute)

 	(epysurv.models.timepoint.Farrington attribute)

 	(epysurv.models.timepoint.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.bayes.Bayes attribute)

 	(epysurv.models.timepoint.boda.Boda attribute)

 	(epysurv.models.timepoint.cdc.CDC attribute)

 	(epysurv.models.timepoint.ears.EarsC1 attribute)

 	(epysurv.models.timepoint.ears.EarsC2 attribute)

 	(epysurv.models.timepoint.ears.EarsC3 attribute)

 	(epysurv.models.timepoint.farrington.Farrington attribute)

 	(epysurv.models.timepoint.farrington.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.glr.GLRNegativeBinomial attribute)

B

 	
 	baseline (epysurv.models.timepoint.ears.EarsC1 attribute)

 	(epysurv.models.timepoint.EarsC1 attribute)

 	(epysurv.models.timepoint.EarsC2 attribute)

 	(epysurv.models.timepoint.EarsC3 attribute)

 	(epysurv.models.timepoint.ears.EarsC2 attribute)

 	(epysurv.models.timepoint.ears.EarsC3 attribute)

 	Bayes (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.bayes)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

 	
 	Boda (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.boda)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

C

 	
 	CDC (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.cdc)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

 	change (epysurv.models.timepoint.glr.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.GLRPoisson attribute), [1]

 	(epysurv.models.timepoint.glr.GLRPoisson attribute), [1]

 	
 	county (epysurv.data.filter_combination.FilterCombination attribute)

 	Cusum (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.cusum)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

D

 	
 	data (epysurv.data.filter_combination.FilterCombination attribute)

 	decision_boundary (epysurv.models.timepoint.Cusum attribute)

 	(epysurv.models.timepoint.cusum.Cusum attribute)

 	direction (epysurv.models.timepoint.glr.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.GLRPoisson attribute), [1]

 	(epysurv.models.timepoint.glr.GLRPoisson attribute), [1]

 	
 	disease (epysurv.data.filter_combination.FilterCombination attribute)

E

 	
 	EarsC1 (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.ears)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

 	EarsC2 (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.ears)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

 	EarsC3 (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.ears)

 	epysurv (module)

 	epysurv.data (module)

 	epysurv.data.disease_loader (module)

 	epysurv.data.filter_combination (module)

 	epysurv.data.salmonella_data (module)

 	epysurv.data.utils (module)

 	epysurv.metrics (module)

 	epysurv.metrics.outbreak_detection (module)

 	epysurv.models (module)

 	epysurv.models.timepoint (module)

 	
 	epysurv.models.timepoint.bayes (module)

 	epysurv.models.timepoint.boda (module)

 	epysurv.models.timepoint.cdc (module)

 	epysurv.models.timepoint.cusum (module)

 	epysurv.models.timepoint.ears (module)

 	epysurv.models.timepoint.farrington (module)

 	epysurv.models.timepoint.glr (module)

 	epysurv.models.timepoint.hmm (module)

 	epysurv.models.timepoint.outbreak_p (module)

 	epysurv.models.timepoint.rki (module)

 	epysurv.models.timeseries (module)

 	epysurv.models.timeseries.convert_interface (module)

 	epysurv.simulation (module)

 	epysurv.simulation.naive_poisson (module)

 	epysurv.visualization (module)

 	epysurv.visualization.model_diagnostics (module)

 	equal_covariate_effects (epysurv.models.timepoint.HMM attribute)

 	(epysurv.models.timepoint.hmm.HMM attribute)

 	expanding_windows() (epysurv.data.filter_combination.FilterCombination method)

 	expected_numbers_method (epysurv.models.timepoint.Cusum attribute)

 	(epysurv.models.timepoint.cusum.Cusum attribute)

F

 	
 	Farrington (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.farrington)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

 	FarringtonFlexible (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.farrington)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

 	
 	FilterCombination (class in epysurv.data.filter_combination)

 	from_ts_input() (epysurv.data.filter_combination.SplitYears class method)

G

 	
 	get_outbreak_begins() (in module epysurv.simulation.naive_poisson)

 	ghozzi_case_score() (in module epysurv.metrics.outbreak_detection)

 	ghozzi_score() (in module epysurv.metrics)

 	(in module epysurv.metrics.outbreak_detection)

 	ghozzi_score_plot() (in module epysurv.visualization.model_diagnostics)

 	glr_test_threshold (epysurv.models.timepoint.glr.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.GLRPoisson attribute), [1]

 	(epysurv.models.timepoint.glr.GLRPoisson attribute), [1]

 	
 	GLRNegativeBinomial (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.glr)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

 	GLRPoisson (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.glr)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

H

 	
 	HMM (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.hmm)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

I

 	
 	include_recent_year (epysurv.models.timepoint.Bayes attribute)

 	(epysurv.models.timepoint.RKI attribute)

 	(epysurv.models.timepoint.bayes.Bayes attribute)

 	(epysurv.models.timepoint.rki.RKI attribute)

L

 	
 	load_diseases() (in module epysurv.data)

 	(in module epysurv.data.disease_loader)

M

 	
 	m (epysurv.models.timepoint.glr.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.GLRPoisson attribute), [1]

 	(epysurv.models.timepoint.glr.GLRPoisson attribute), [1]

 	max_upperbound_cases (epysurv.models.timepoint.outbreak_p.OutbreakP attribute)

 	(epysurv.models.timepoint.OutbreakP attribute)

 	mc_munu (epysurv.models.timepoint.Boda attribute)

 	(epysurv.models.timepoint.boda.Boda attribute)

 	mc_y (epysurv.models.timepoint.Boda attribute)

 	(epysurv.models.timepoint.boda.Boda attribute)

 	
 	min_cases_in_past_periods (epysurv.models.timepoint.Farrington attribute)

 	(epysurv.models.timepoint.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.farrington.Farrington attribute)

 	(epysurv.models.timepoint.farrington.FarringtonFlexible attribute)

 	min_sigma (epysurv.models.timepoint.ears.EarsC1 attribute)

 	(epysurv.models.timepoint.EarsC1 attribute)

 	(epysurv.models.timepoint.EarsC2 attribute)

 	(epysurv.models.timepoint.ears.EarsC2 attribute)

N

 	
 	n_harmonics (epysurv.models.timepoint.HMM attribute)

 	(epysurv.models.timepoint.hmm.HMM attribute)

 	n_hidden_states (epysurv.models.timepoint.HMM attribute)

 	(epysurv.models.timepoint.hmm.HMM attribute)

 	
 	n_observations (epysurv.models.timepoint.HMM attribute)

 	(epysurv.models.timepoint.hmm.HMM attribute)

 	negbin_alpha (epysurv.models.timepoint.Cusum attribute)

 	(epysurv.models.timepoint.cusum.Cusum attribute)

O

 	
 	OutbreakP (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.outbreak_p)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

P

 	
 	past_period_cutoff (epysurv.models.timepoint.Farrington attribute)

 	(epysurv.models.timepoint.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.farrington.Farrington attribute)

 	(epysurv.models.timepoint.farrington.FarringtonFlexible attribute)

 	past_weeks_not_included (epysurv.models.timepoint.farrington.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.FarringtonFlexible attribute)

 	pathogen (epysurv.data.filter_combination.FilterCombination attribute)

 	
 	plot_confusion_matrix() (in module epysurv.visualization.model_diagnostics)

 	plot_prediction() (in module epysurv.visualization.model_diagnostics)

 	PointSource (class in epysurv.simulation)

 	power_transform (epysurv.models.timepoint.Farrington attribute)

 	(epysurv.models.timepoint.farrington.Farrington attribute)

 	prior (epysurv.models.timepoint.Boda attribute)

 	(epysurv.models.timepoint.boda.Boda attribute)

Q

 	
 	quantile_method (epysurv.models.timepoint.Boda attribute)

 	(epysurv.models.timepoint.boda.Boda attribute)

R

 	
 	reference_value (epysurv.models.timepoint.Cusum attribute)

 	(epysurv.models.timepoint.cusum.Cusum attribute)

 	reweight (epysurv.models.timepoint.Farrington attribute)

 	(epysurv.models.timepoint.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.farrington.Farrington attribute)

 	(epysurv.models.timepoint.farrington.FarringtonFlexible attribute)

 	
 	RKI (class in epysurv.models.timepoint)

 	(class in epysurv.models.timepoint.rki)

 	(class in epysurv.models.timeseries)

 	(class in epysurv.models.timeseries.convert_interface)

S

 	
 	salmonella() (in module epysurv.data)

 	(in module epysurv.data.salmonella_data)

 	sampling_method (epysurv.models.timepoint.Boda attribute)

 	(epysurv.models.timepoint.boda.Boda attribute)

 	season (epysurv.models.timepoint.Boda attribute)

 	(epysurv.models.timepoint.boda.Boda attribute)

 	
 	SeasonalNoiseNegativeBinomial (class in epysurv.simulation)

 	SeasonalNoisePoisson (class in epysurv.simulation)

 	simulate() (epysurv.simulation.PointSource method)

 	(epysurv.simulation.SeasonalNoiseNegativeBinomial method)

 	(epysurv.simulation.SeasonalNoisePoisson method)

 	simulate_outbreaks() (in module epysurv.simulation.naive_poisson)

 	SplitYears (class in epysurv.data.filter_combination)

T

 	
 	test() (epysurv.data.salmonella_data.TimeseriesClassificationData property)

 	(epysurv.data.TimeseriesClassificationData property)

 	test_final() (epysurv.data.filter_combination.TimeseriesClassificationData property)

 	test_gen() (epysurv.data.filter_combination.TimeseriesClassificationData property)

 	(epysurv.data.TimeseriesClassificationData property)

 	(epysurv.data.salmonella_data.TimeseriesClassificationData property)

 	threshold (epysurv.models.timepoint.outbreak_p.OutbreakP attribute)

 	(epysurv.models.timepoint.OutbreakP attribute)

 	threshold_method (epysurv.models.timepoint.farrington.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.FarringtonFlexible attribute)

 	timedelta_weeks() (in module epysurv.data.utils)

 	timeseries_classifaction_generator() (in module epysurv.data)

 	(in module epysurv.data.salmonella_data)

 	timeseries_classifcation() (in module epysurv.data)

 	(in module epysurv.data.salmonella_data)

 	TimeseriesClassificationData (class in epysurv.data)

 	(class in epysurv.data.filter_combination)

 	(class in epysurv.data.salmonella_data)

 	
 	train() (epysurv.data.salmonella_data.TimeseriesClassificationData property)

 	(epysurv.data.TimeseriesClassificationData property)

 	train_final() (epysurv.data.filter_combination.TimeseriesClassificationData property)

 	train_gen() (epysurv.data.filter_combination.TimeseriesClassificationData property)

 	(epysurv.data.TimeseriesClassificationData property)

 	(epysurv.data.salmonella_data.TimeseriesClassificationData property)

 	transform (epysurv.models.timepoint.Cusum attribute)

 	(epysurv.models.timepoint.cusum.Cusum attribute)

 	trend (epysurv.models.timepoint.Boda attribute)

 	(epysurv.models.timepoint.Farrington attribute)

 	(epysurv.models.timepoint.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.HMM attribute)

 	(epysurv.models.timepoint.boda.Boda attribute)

 	(epysurv.models.timepoint.farrington.Farrington attribute)

 	(epysurv.models.timepoint.farrington.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.hmm.HMM attribute)

 	trend_threshold (epysurv.models.timepoint.farrington.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.FarringtonFlexible attribute)

U

 	
 	upperbound_statistic (epysurv.models.timepoint.glr.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.GLRPoisson attribute), [1]

 	(epysurv.models.timepoint.OutbreakP attribute)

 	(epysurv.models.timepoint.glr.GLRPoisson attribute), [1]

 	(epysurv.models.timepoint.outbreak_p.OutbreakP attribute)

W

 	
 	weights_threshold (epysurv.models.timepoint.farrington.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.FarringtonFlexible attribute)

 	window_half_width (epysurv.models.timepoint.Bayes attribute)

 	(epysurv.models.timepoint.CDC attribute)

 	(epysurv.models.timepoint.Farrington attribute)

 	(epysurv.models.timepoint.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.RKI attribute)

 	(epysurv.models.timepoint.bayes.Bayes attribute)

 	(epysurv.models.timepoint.cdc.CDC attribute)

 	(epysurv.models.timepoint.farrington.Farrington attribute)

 	(epysurv.models.timepoint.farrington.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.rki.RKI attribute)

X

 	
 	x_max (epysurv.models.timepoint.glr.GLRNegativeBinomial attribute)

 	(epysurv.models.timepoint.GLRNegativeBinomial attribute)

Y

 	
 	years_back (epysurv.models.timepoint.Bayes attribute)

 	(epysurv.models.timepoint.CDC attribute)

 	(epysurv.models.timepoint.Farrington attribute)

 	(epysurv.models.timepoint.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.RKI attribute)

 	(epysurv.models.timepoint.bayes.Bayes attribute)

 	(epysurv.models.timepoint.cdc.CDC attribute)

 	(epysurv.models.timepoint.farrington.Farrington attribute)

 	(epysurv.models.timepoint.farrington.FarringtonFlexible attribute)

 	(epysurv.models.timepoint.rki.RKI attribute)

eypsurv

This notes demonstrates the basic usage of epysurv

[2]:

import sys
sys.path.append("..")

[3]:

import matplotlib.pyplot as plt
import pandas as pd
from epysurv import data as epidata

[4]:

plt.rc("figure", figsize=(16, 8))

Let’s first get some data and plot it. We use the case counts of Salmonella Newport from Germany between 2004 and 2013. The data is already split into training and test set. We see that there are no outbreaks in the training set, but some around the end of 2011 in the test set.

[5]:

train, test = epidata.salmonella()
train.head()

[5]:

_static/file.png

_images/demo_6_1.png
n_cases train
n_outbreak cases_train
n_cases test

n_outbreak cases_test

| AT

200 2005 06 07 B 2009 £ EiE Ei8)

_static/minus.png

_static/plus.png

_images/demo_11_1.png
cases

2

A alarm
V¥ outbreak

Mo

wa 205 a5 w07 e ms mwo am 2w s
time

_images/demo_12_2.png
cases

2

A alarm
V¥ outbreak
A
00 2005 06 2007 008 2009 w10 w011 w2 w3

time

_images/demo_14_0.png
“True label

no outbreak

outbreak

no outbreak

Predicted label

outbreak

nav.xhtml

 Table of Contents

 		
 epysurv: Epidemiological Surveillance in Python

 		
 Quickstart

 		
 Installation

 		
 Demo

 		
 Outbreak Detection

 		
 Time Point Classification

 		
 Time Series Classification

 		
 Models

 		
 Window-based Approaches

 		
 GLM-based Approaches

 		
 Cusum-based Approaches

